K.K. UNIVERSITY

NALANDA, BIHAR - 803115

School of Applied Sciences

Master of Physics (M.Sc.)

(Two Years Full Programme)

2024-2025

SCHEME OF EXAMINATION

&

DETAILED SYLLABUS

Runk

KK University Berauti, Nepura, Bihar Shari Nalanda - 803115 (Bihar)

M.Sc. PHYSICS

Programme/Course Structure

(For total credits: 80)

Year	Semester	Course Code	Course Title	L	Т	Р	С
		MSPH 1101	Mathematical Methods in Physics	4	1	0	5
	1	MSPH 1102	Quantum Mechanics-I	4	1	0	5
	1	MSPH 1103	Spectroscopy	4	1	0	5
		MSPH 1104-P	Practical-I	0	0	5	5
			Total	12	3	5	20
1		MSPH 1201	Solid State Physics and General	4	1	0	5
			Electronics				
	2	MSPH 1202	Quantum Mechanics -II	4	1	0	5
		MSPH 1203	Nuclear Physics – I	4	1	0	5
		MSPH 1204-P	Practical-II	0	0	5	5
			Total	12	3	5	20
		MSPH 2101	Numerical Methods and Simulation	4	1	0	5
		MSPH 2102	Statistical Physics	4	1	0	5
	3	MSPH 2103	Nuclear Physics –II	4	1	0	5
		MSPH 2104-P	Practical-III	0	0	5	5
2			Total	12	3	5	20
		MSPH 2201	Nanophysics and Nano-materials – I	4	1	0	5
		MSPH 2202	Condensed Matter Physics	4	1	0	5
	4	MSPH 2203	Nanophysics and Nano-materials – II	4	1	0	5
		MSPH 2204-P	Project and Dissertation	0	0	5	5
			Total	12	3	5	20

Total Credits: 80 (Four Semesters)

L = 48; T = 12; P = 20

L = Lecture; T = Theory; P = Practical/Project

ALA

Rumb

SEMESTER – I

Year	Semester	Course Code	Course Title	L	Т	Р	С
1	1	MSPH 1101	Mathematical Methods in Physics	4	1	0	5
		MSPH 1102	Quantum Mechanics-I	4	1	0	5
		MSPH 1103	Spectroscopy	4	1	0	5
		MSPH 1104-P	Practical-I	0	0	5	5
			Total	12	3	5	20

Mathematical Methods in Physics

Course Code: MSPH - 1101

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify scientific phenomena and problems.
- 4. Participate in experiments and independent lifelong learning projects useful for everyday life and societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the use of mathematical methods and techniques in physics.
- 2. Evaluate the role of tensor, matrix operator, functions, electrodynamics, and data processing in physics.
- 3. Identify and analyze the mathematical requirements to solve real problems and group operations.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Rumw

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Syllabus details:

UNITS	CONTENTS	LECTURE HOURS	WEEK ALLOTMENT
Unit I	Matrices and Tensors:	15	1-3
	Introduction of matrices through rotation of co-ordinate		
	systems, Orthogonal, Hermitian, Unitary, Null and Unit		
	matrices, Singular and Non-singular matrices, Inverse of a		
	matrix, Trace of a matrix, Eigenvalues and Eigenvectors,		
	Diagonalization. The tensorial character of physical entities,		
	Covariant, Contravariant, and Mixed tensors, Contraction,		
	Quotient rule, Differentiation, Kronecker tensor,		
	Pseudotensor, Symmetric and Anti-symmetric tensors.		
Unit II	Green's Functions:	15	4-6
	Introduction Construction of the Green's function for 1d, 2d,		
	and 3d problems. Solution of some standard problems using		
	Green's function technique.		
Unit III	Group Theory:	15	7-9
	Definition and examples of physically important finite groups,		
	Basic symmetry operations and their matrix representations,		
	Multiplication table, Cyclic groups and subgroups, and		
	Classes. Reducible and Irreducible representation, Schur's		
	lemma, Orthogonality theorem, Character of a representation,		
	Construction character tables.		
Unit IV	Electrodynamics and Relativity:	15	10-12
	Lorentz transformation as orthogonal transformation in 4-		
	dimensions, 4 vectors and light cone, energy-momentum 4-		
	vectors, Relativistic force equation, Covariance of Maxwell's		
	equation, Transformation of electromagnetic fields, Solution		
	of the wave equation in covariant form, Field due to a charge		Rumb
School of A	Applied Sciences, K.K. University Biharsharif Nalanda 15		Vie Obere lles
A.	*	PIC	KK University
	2 MALANO	Beraut	, Nepura, Bihar Shanda - 803115 (Bihar

o Vice Chancellor KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

	(
	moving with constant velocity, Radiation from oscillating		
	dipole, Total power radiated from an accelerated charge,		
	Larmor formula, Principle of equivalence, Principle of		
	covariance, Covariant differentiation, Curvature tensor, field		
	equation, Reduction to Newton's laws of gravitation.		
Unit V	Signal Processing and Data Analysis:	15	13-15
	Fast transforms, Random noise and signal, White and colored		
	noise, Power spectrum, Convolution, Auto-correlation and		
	cross-correlation, Matched filtering techniques, and Maximum		
	entropy method.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLqGm0yRYwThklRVGuMC01Gl7m1YSv_qn&si=QOGB1zFeZ 8kQvEAu

Books Recommended:

- Mathematical Methods for Physics; Arfken G. and Weber H.J.
- Mathematical Physics; Rajput B.S.
- Mathematical Methods in the Physical Sciences; Boas M.L. John Wiley & Sons, NewYork.
- Mathematical Physics; H.K. Das.

School of Applied Sciences, K.K. University Biharsharif Nalanda

A

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Quantum Mechanics – I

Course Code: MSPH - 1102

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the role of quantum mechanics in the evolution of microscopic physical systems.
- 2. Apply quantum mechanics to calculate physically observable quantities with the help of Schrodinge's wave functions and operators.
- 3. Interpreted the key concepts and principles of quantum physics to solve the energy eigenstates for atoms and molecules.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Mathematical Foundation of Quantum Mechanics:	18	1-3
	Vectors and Linear vector space, Closure property, Linear		
	independence of vectors, Bases and dimensions. Some		
	examples of linear vector spaces, Dirac's notations, Bra and		
	Ket vectors, Combining bras with kets, Inner product, and		
	inner product space, Orthonormality of vectors, Gram		
	Schmidt orthogonalization of vectors in a linear vector	6	lumb

School of Applied Sciences, K.K. University Biharsharif Nalanda

	space, Schwartz inequality, Arbitrary Vectors in an		
	orthonormal basis, Completeness condition, Outer product,		
	Hilbert spaces, Operator on a linear vector space, Algebra		
	of linear operators, Hermitian operators and their		
	properties, Unitary, Projection, Commuting operators and		
	related theorems, Complete set of commuting operators,		
	Eigenvalues and eigenfunctions (continuous and bounded		
	operators), Co-ordinate and momentum representation,		
	Time differentiation of operators.		
Unit II	Hilbert Space Formalism of Quantum Mechanics:	18	4-6
	Postulates, Expectation values and probabilities, Explicit		
	representation of operators, The general uncertainty		
	relationship, and The minimum uncertainty product.		
Unit	Quantum Dynamics:	18	7-9
III			
	The equation of motion- The Schrodinger; the Heisenberg		
	and the Interaction pictures; Applications to the linear		
	harmonic oscillator and the hydrogen atom. Linear		
	harmonic oscillator using Creation and annihilation		
	operator.		
Unit IV	Angular Momentum:	18	10-12
	Commutation relations for angular momentum operators,		
	Eigenvalues and eigenvectors, Pauli spin matrices and spin		
	eigenvectors, Addition theorem, Clebsch- Gordon co-		
	efficient, Angular momentum and rotation, Motion in a		
	centrally symmetric field.		
Unit V	Invariance Principle and Conservation Laws:	18	13-15
	Space-time symmetries and conservation Laws for linear		
	momentum, Angular momentum, Energy, and Parity.		

MALAN

Rumb

Vice Chancellor **KK University** Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PL74Pz7AXMAnOrUGJ5MqTOUoa1gczsxI91&si=dZ7u3KVK5m FVyOLd

https://youtube.com/playlist?list=PLbGHLEQLE2Y6pOMVq2lx3VEVs3Az9puoZ&si=idghQmVuK IZ6OmeM

Books Recommended:

- Quantum Mechanics; Schiff L.I.; McGraw-Hill (2008).
- Quantum Mechanics; Ghatak & Loknathan MacMillan India Ltd (2004).
- Quantum Mechanics; Satya Prakash.
- Quantum Mechanics; Sakurai J.J. Addison Wesley (1967).
- Quantum Mechanics: Concepts and Applications; Nouredine Zettili, Wiley.

School of Applied Sciences, K.K. University Biharsharif Nalanda

ALAS

Rumb

Spectroscopy

Course Code: MSPH - 1103

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the basic principle of various types of spectroscopy.
- 2. Interpretate data from UV-Vis, IR, NMR, Raman, elemental analysis, fluorescence, and atomic absorption spectroscopy.
- 3. Demonstrate and develop practical and technical skills to explain the data obtained from various characterization techniques based on light energy.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Atomic Spectra:	15	1-3
	Space quantization, Relation between angular momentum and		
	magnetic moment, Bohr magnetron. Fine structure of spectral		
	lines, Term symbols of alkali and alkaline earth atoms. LS and		
	JJ coupling. Quantum theory of Zeeman effect (normal and	6	2
		(h	omin

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

M.Sc. Physic	cs (Two	Year Cours	se) Syllabus
--------------	---------	------------	--------------

anomalous), Paschen-Back effect, Stark effect (intear and non-		
linear). Hyperfine structure of spectral lines, X-ray spectra		
characteristics, and absorption.		
Unit II The Rotation of the Molecule:	15	4-6
Rotational Spectra-Rigid diatomic molecule, The intensities of		
spectral lines, Effect of isotopic substitution, the non-rigid		
rotator, Simple harmonic oscillator, The an- harmonic		
oscillator, Diatomic vibrating rotator, Born Oppenheimer		
approximation, Techniques and instrumentation applications.		
Unit Molecular Spectra:	15	7-9
III		
Infrared and Raman spectra of diatomic molecules using an-		
harmonic oscillator, non-rigid rotator, and vibrating rotator as		
models. Electronic states and electronic transitions in diatomic		
molecules, Frank Condon principle.		
Unit Resonance Spectroscopy:	12	10-12
IV		
Nature of spinning particles. Interaction between spin and a		
magnetic field Larmor Precession Theory of NMR Chemical		
shift-relayation Mechanism experimental study of NMR		
Theory and experimental study of NOP Theory of ESP		
Humorfine structure and fine structure of ESD. Experimental		
Hyperine structure and the structure of ESK, Experimental		
studies and applications, Mossbauer spectroscopy, Principle-		
Isomer shift, Quadrupole effect, effect of magnetic field,		
Instrumentation applications.		
Unit V Laser Holography:	12	13-15
Spontaneous and stimulated emission, Einstein A and B		
coefficients, Basic Principles of Laser, Population Inversion		
Two level and Three level Laser system, optical pumping- 3+		
rate equation, modes of resonator and coherence length. The		
Nd YAG laser. The Neodymium Glass laser. The CO ₂ Laser		
Organic Dye lasers Semi-conductor Laser Liquid Laser		
Principle of Holography Theory-practical applications		
including data storage.	K	unter
hool of Applied Sciences, K.K. University Biharsharif Nalanda 5	n	
	PIO	vice chancello
A A A A A A A A A A A A A A A A A A A		KK University

Pro Vice Chancellor KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLHs0Ha1N2sgdhps7XcrvC6Ecay4BcvA2B&si=gWhrI1Z21S9P_iwu

https://youtube.com/playlist?list=PLLf6O8XdGj03ktP4MHmIV87pHZHBEUF6f&si=Y08dpwCjOa 5Bn3WI

Books Recommended:

- Introduction to Atomic Spectra; White H.E.
- Fundamentals of Molecular Spectroscopy; Banwell C.N. and McCash E.M.
- Atomic and Molecular Physics; Rajkumar.
- Solid State Spectroscopy; H. Kuzmany, Springer.
- Spectroscopy; H. Kaur, Pragati Publications.

School of Applied Sciences, K.K. University Biharsharif Nalanda

ALAS

Rumw

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Practical-I

Course Code: MSPH 1104 - P

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption and emission, light scattering, etc.

5. Identify Research Gap:

Enable students to formulate pertinent questions to be addressed in their project work via article review, data simulation and analysis.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Runk

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Syllabus details:

S. No.	Objective/Aim
1.	To study the Michelson's Interferometer.
2.	To study the Fabre-Perot Etalon.
3.	To study the Edser-Butler Plate.
4.	To study the phenomena with polarized light.
5.	Verification of Rayleigh's criterion for the limit of resolution of spectral lines using
	(a) Prism spectrum and (b) grating spectrum.
6.	To study the Edser-Butler Plate.
7.	To determine the optical constants of metal in thin film form.
8.	To study the Zeeman effect.

Useful links:

https://youtu.be/yQsEw7EdNVk?si=4sltW7owFXQ5Im2u https://youtu.be/CwOhiRiZ4xs?si=_MB453e47SCF_0jc https://youtu.be/6ZFmWHnNQrs?si=qCAE4EXGV2awa0yq

VALAN

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

Rumb

SEMESTER – II

Year	Semester	Course Code	Course Title	L	Т	Р	С
1	2	MSPH 1201	Solid State Physics and General Electronics	4	1	0	5
		MSPH 1202	Quantum Mechanics -II	4	1	0	5
		MSPH 1203	Nuclear Physics – I	4	1	0	5
		MSPH 1204-P	Practical-II	0	0	5	5
			Total	12	3	5	20

Solid State Physics and General Electronics

Course Code: MSPH - 1201

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify scientific phenomena and problems.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

- 1. Understand the scientific and broader community value of solid-state physics.
- 2. Analyze the theoretical strategies for answering crystallographic and material science-related problems.
- 3. Expand the basic knowledge and properties of solid-state physics to scientific areas like phonons dispersion, superconductors, dielectric, crystalline structures, solid-state devices, etc.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMEN
Unit I	Crystal Physics	15	1-3
	Laue theory of X-ray diffraction, Geometrical		
	structure factor, and intensity of diffraction maxima.		
	Calculation of structure factor for bcc, fcc, and		
	diamond structure, Intensity of diffraction maxima,		
	Extinction due to Lattice cantering.		
Unit II	Electronic Properties:	15	4-6
	Electron in a Periodic lattice, Block Theorem, Band		
	Theory, Tight Binding, Cellular and Pseudo potential		
	method, Fermi surface, de Haas van Alphen Effect,		
	Cyclotron resonance, Magneto resistance, Quantum		
	Hall Effect.		
Unit	Magnetism:	15	7-9
III			
	Exchange interaction, Heisenberg model and		
	INFR		-

	5		
	Ferri and Anti-ferromagnetic order, Domains, and		
	Bloch Wall energy.		
	Superconductivity:		
	Basic properties of superconductors, Josephson		
	Effect, BCS theory, High-temperature		
	superconductivity.		
Unit	Microwave Components/Devices:	15	10-12
IV			
	Attenuators, phase shifters, directional couplers, T		
	junction, Magic Tee, Standing wave detectors, and		
	cavity resonators (circular). Reflex klystron, TWT,		
	Velocity modulation, Magnetron, Cavity Magnetron,		
	Principle of operation of magnetrons in pi-mode and		
	anode strapping.		
Unit V	Photonic Devices:	15	13-15
	Radiative and non-radiative transitions, optical		
	absorption, bulk and thin film photoconductive		
	devices (LDR), diode photodetectors, solar cells		
	(open circuit voltage and short circuit current, fill		
	factor), LED (high-frequency limit, effect of surface		
	and indirect recombination current, operation of		
	LED), Blue LED, LEDs as commercial sources of		
	lighting, diode lasers conditions for population		
	inversion in active region, optical gain and threshold		
	current for lasing.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PL0vbmKf7BZLPYukj_HEwJZmCxEPPPBOod&si=5ghvA2Rgr1 uPI4NY

VALAS

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Solid State Physics **PDF solutions:** and General Electronic

Books Recommended:

- Introduction to Solid-State Physics; Kittel C. John Willey (2004).
- Introduction to Solid-State Physics; Mayers H.P. Taylor & Francis (1997).
- Elements of Solid-State Physics; Srivastava J.P. Prentice-Hall of India Pvt. Ltd.
- Solid State Physics; Ashcroft N.W. and Mermin.
- Solid State Physics; S.O. Pillai.
- Principle of Electronics; V.K. Mehta, S. Chand..
- Principle of Electronics Devices and Circuits (Analog and Digital); B.L. Theraja and Dr. R.S. Sedha,

S. Chand.

• Microwave Devices and Circuits; Samuel Y. Liao, Pearson.

Runk

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Quantum Mechanics – II

Course Code: MSPH - 1202

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the use of advanced quantum mechanics and quantum field theories.
- 2. Explore common approximation techniques to model physical systems such as harmonic oscillators and bound state systems.
- 3. Analyze and discuss the failure and difficulties with the theory of quantum measurements and local realism.
- 4. Critically analyze the quantum problems involving Heisenberg, Dirac notation, Lagrangian, Hermitian, Schrodinger, scattering, and interaction pictures.

Objective of the Program:

Runk

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Approximation Method	18	1-3
	The WKB approximation and its application to one-		
	dimensional bound systems and barrier penetration		
	problems, the vibrational method (Ritz method) and its		
	application to linear harmonic oscillator and helium atom,		
	Stationary perturbation theory, non-degenerate and		
	degenerate cases and applications to an-harmonic oscillator;		
	linear Stark effect; Zeeman effect and spin-orbit coupling in		
	the hydrogen atom. Time-dependent perturbation theory,		
	constant perturbation, and Fermi Golden rule, harmonic		
	perturbation (Einstein's A and B coefficient).		
Unit II	Theory of Scattering:	18	4-6
	Scattering amplitude and cross-section, Partial wave		
	analysis, Born approximation and its validity with		
	application to Rutherford's alpha-particle scattering.		
Unit	Identical Particles:	18	7-9
III			
	Many particles Schrodinger equation, The		
	indistinguishability principle, Symmetric and anti-		
	symmetric wave functions. Pauli exclusion principle,		
	Importance of symmetry character of the wave function in		
	the dynamics of the bound system (helium atom), Hydrogen	15.1	
	molecule (Heitler-London theory).	6	unit

ALA

School of Applied Sciences, K.K. University Biharsharif Nalanda

Unit IV	Relativistic Quantum Mechanics:	18	10-12
	The Klein-Gordon equation for a free particle, Dirac		
	equation, Properties of Dirac matrices, Probability and		
	current densities, Covariance of Dirac equation, Free		
	particle solution and negative energy states, magnetic		
	moment and spin of an electron, Dirac equation for the		
	central field, Energy states of the hydrogen atom.		
Unit V	Second Quantization:	18	13-15
	Number representation of fermions and bosons, Creation		
	and annihilation operator, Electromagnetic field in vacuum.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PL74Pz7AXMAnOrUGJ5MqTOUoa1gczsxI91&si=dZ7u3KVK5m FVyOLd

https://youtube.com/playlist?list=PLbGHLEQLE2Y6pOMVq2lx3VEVs3Az9puoZ&si=idghQmVuK lZ6OmeM

Books Recommended:

- Quantum Mechanics; Leonard I. Schiff, McGraw-Hill (2008)..
- Quantum Mechanics; Ghatak & Loknathan MacMillan India Ltd (2004).

ALA

- Advance Quantum Mechanics; Satya Prakash.
- Quantum Mechanics; J.J.

Sakurai,

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Addison Wesley (1967).

• Introduction to Quantum Mechanics; David J. Griffiths and Darrel F. Schroeter, Cambridge University Press.

Nuclear Physics - I

Course Code: MSPH - 1203

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the basic properties of nuclear physics such as interactions, structures, forces, and reactions.
- 2. Evaluate the role of tensor, matrix operator, functions, electrodynamics, and data processing in physics.
- 3. Identify and analyze the mathematical requirements to solve real problems and group operations.

Objective of the Program:

The primary objective of this

in theoretical as well as

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

program is to impart quality education both

experimental

physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTME
Unit I	Nuclear Size and Shape:	15	1-3
	Scattering and electromagnetic methods for determining the		
	nuclear radius, Wave mechanical properties of the nucleus		
	and statistics, Electric and magnetic moments, and nuclear		
	properties in detail.		
Unit II	Nuclear Force:	15	4-6
	Types of nuclear potentials, Exchange forces and mass		
	formula, Properties of nuclear forces. Yukawa exchange		
	interaction. n-p scattering at low energies, scattering length,		
	Spin dependence of n-p scattering, effective range theory in		
	n-p scattering, p-p scattering at low energy,		
	Phenomenological two nucleon potential.		
Unit	Nuclear Shell Model:	15	7-9
III			
	Liquid drop model, extreme single particle model, and		
	analysis of its predictions, Spin-orbit coupling, Single		
	particle model, Magnetic moment, Electric quadrupole		
	moment.		
Unit IV	Collective Model of Nucleus:	15	10-12
	Collective motion, parametrization of nuclear surface		
	Rotation of deformed nuclei, Collective model		
	Hamiltonian, the nuclear wave function for even-even		
	nuclei and odd-A nuclei, Rotation-vibrational coupling,		
	Nilsson model, Cranking shell model.		
	Nucleus Reactions:	5.	0 1
	United and	(umb
ofApplied	Sciences, K.K. University Biharsharif Nalanda 5	Pio	Vice Chanc
12	TO TA	Porouti	KK Universit
2	ALANY	Derauti	, Nepula, Dill

Vice Chancelloi **KK University** Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

	Type of reactions, reaction cross section, conservation laws, Q-values and their significance, Coulomb excitation, Breit- Wigner formula, compound nucleus, energy of excitation, Direct reactions. Mechanism of Nuclear Fusion and Fission,		
	Nuclear Reactors.		
I Init V	Fnorgy Loss of Charge Particles and Camma Pays	15	10.15
	Energy Loss of Charge 1 at ticles and Gamma Rays.	15	13-15
Chit V	Energy Loss of Charge I at ticles and Gamma Rays.	15	13-15
Cint V	Mechanism, Ionization formula, stopping power and range,	15	13-15
Cint V	Mechanism, Ionization formula, stopping power and range, radiation detectors – multi-wire proportional counter,	15	13-15
Cint V	Mechanism, Ionization formula, stopping power and range, radiation detectors – multi-wire proportional counter, scintillation counter, and Cerenkov detector. Discriminator,	15	13-15

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLRN3HroZGu2n_j3Snd_fSYNLvCkao8HIx&si=1_T_IsHP17kcy Wgr

PDF solutions:

Books Recommended:

- Nuclear Physics; S.N. Ghoshal, S. Chand.
- Nuclear Physics: An Introduction; S.B. Patel, New Age International Publisher.

A

- Introductory Nuclear Physics; Samuel S.M. Wong, Wiley-VCH.
- Structure of Nucleus; M.A. Preston and R.K. Bhaduri.
- Theory of Nuclear Structure; M.K. Pal.
- Nuclear Physics; D.C. Tayal.
- Introductory Nuclear Physics; Kenneth S. Krane, Wiley.
- Nuclear Physics; Roy R.R. & Nigam B.P.

Rumw

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Practical-II

Course Code: MSPH 1204 - P

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments,

School of Applied Sciences, K.K. University Biharsharif Nalanda

including lab

Rumb

procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

5. Identify Research Gap:

Enable students to formulate pertinent questions to be addressed in their project work via article review, data simulation and analysis.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

S. No.	Objective/Aim
1.	e/m' measurement by Braun's tube and by the Magnetron valve method.
2.	'e' measurement by Millikan oil drop apparatus.
3.	Design and characteristics of passive attenuators (T- and π -types).
4.	BJT-based voltage amplifier: design and performance study with and without negative
	feedback.
5.	JFET based voltage amplifier: design and performance study.
6.	Half- and Full-wave rectifiers with and without filters.

Useful links:

https://youtu.be/rntSh_CbDdg?si=nJoUyXzVWaVBs2v3

https://youtu.be/cpXndKi2Wyo?si=AD31N0P_n4tPamsP

https://youtu.be/Td-

TGwNE9AY?si=nJXjMe9yhJrmS-rk

School of Applied Sciences, K.K. University Biharsharif Nalanda

SEMESTER – III

Year	Semester	Course Code	Course Title	L	Т	Р	С
2	3	MSPH 2101	Numerical Methods and Simulation	4	1	0	5
		MSPH 2102	Statistical Physics	4	1	0	5
		MSPH 2103	Nuclear Physics –II	4	1	0	5
		MSPH 2104-P	Practical-III	0	0	5	5
			Total	12	3	5	20

Numerical Methods and Simulations

Course Code: MSPH - 2101

Program Outcomes:

1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.

SIVER

ALAS

2. Evaluate the essential

School of Applied Sciences, K.K. University Biharsharif Nalanda

prerequisites

Rumb

and root causes to address actual problems.

- 3. Apply the principles to simplify scientific phenomena and problems.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand common numerical methods and how to use them to approximate solutions to mathematical problems.
- 2. Identify, analyze, and interpret the mathematical requirements to solve numerical problems.
- 3. Apply numerical methods to solve mathematical problems.
- 4. Understanding the simulation and modeling techniques including MATLAB/SIMULINK.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Numerical Methods and Simulation:	15	1-3
	Numerical solution of algebraic equations, Iteration,		
	Newton Raphson method, Solution of Linear system, Direct		
	method, Gauss, Gauss-Jordon elimination method, Matrix		
	inversion and LU decomposition, Eigen values and Eigen		
	vectors, Applications.		
	Interpolation, Logrange approximation, Newton and		
	Chebyshev Polynomials, least square fitting, Application in		
	some physical problems		

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

Rumw

Unit II Numerical Differentiation and Integration:	15	4-6
Numerical solution of the ordinary differential equation,		
Iteration method, Picard's method, Euler's method, and		
improved Euiler's method. Introduction to quadrature,		
trapezoidal and Simpson'srule Applications.		
Unit Numerical Solutions of Partial Differential Equations:	15	7-9
III		
First and second order, Linear and non-linear differential		
equations, Solution by method of iteration, Euler and		
Runge Kutta methods. Finite difference method,		
Relaxation, Fourier and cyclic reduction and the Rayleigh-		
Ritz method, Application to diffusion of dopant in a		
semiconductor, Wave equation in a coaxial cable, Vibrating		
strings and membranes, Poison equation, Schrodinger		
equations.		
Unit IV Monte Carlo Technique:	15	10-12
Evaluation of single and multi-dimensional integrals,		
Optimization problems, Applications to statistical		
mechanics, Metropolis algorithm.		
Simulation/Modelling:		
Concept of modeling, Introduction to techniques of		
modeling, State variable model of the system, Model		
parameters and simulation using		
SCILAB/MATLAB/SIMULINK, Time domain and		
frequency domain analysis of systems using		
SCILAB/MATLAB, Spice modeling of semiconductor		
devices (PN diode and BJT) and programming		
methodology, Circuit simulation using		
PSpice/LabView/ORCAD.	5	2
Contraction of the second	(Kumw

School of Applied Sciences, K.K. University Biharsharif Nalanda 1E

Z

-

MALAN

o Vice Chancellor **KK University** Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLwdnzlV3ogoUY43XoMwVVCWDSImC9mVQB&si=NIOjMN AIPbS72T6o

Books Recommended:

- Introduction to Numerical Analysis; S.S. Sastry, PHI Learning Pvt. Ltd.
- Schaum's Outline of Programming with C++; J. Hubbard, McGraw-Hill Pub..
- A First Course in Numerical Methods; U.M. Ascher & C. Greif, PHI Learning.
- Numerical Methods for Scientists & Engineers; R.W. Hamming, Courier Dover Pub.

Statistical Physics

Course Code: MSPH - 2102

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

 Understand statistical physics and thermodynamics as the logical consequences of the postulates of statistical mechanics.

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

Runk

2. Apply the concepts and laws of statistical physics to solve problems like gases, partition functions, microstates, macrostates, phase space, and phase diagrams.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMEN
Unit I	Quantum Ensemble Theory:	15	1-3
	Micro-canonical Canonical and Grand Canonical ensembles,		
	Phase space, Distribution functions, Partition function and		
	relationship to thermodynamic quantities, Fluctuations in		
	energy, particle density, Pressure and volume, Equivalence of ensembles.		
Unit II	Quantum Statistics:	15	4-6
	Equation of state of ideal Fermi and Bose gases, Degenerate		
	electron gas, and specific heat, Degenerate Bose gas, Bose-		
	Einstein condensation, Evaluation of constant α and β and its		
	thermodynamics interpretation, Thermal properties of Bose-		
	Einstein and liquid He4, the Lambda transition, two-fluid		
	model, Black body distribution law. Density matrix and		
	classical limit for N- particle partition function.		
	Imperfect Gases:		
	Classical and Quantum cluster expansion, Virial equation of		
	state, Virial coefficients in the classical limit, Second Virial		
	coefficients for hard-sphere and square-well potentials.		
Unit	Phase Transitions:	15	7-9
III	Ising model, Bragg-Williums Approximation, Mean field	6	Rumb
ofApplied	Sciences, K.K. University Biharsharif Nalanda 5	Pic	Vice Chance
Aller	* TALANOP	Berauti	KK University

		Wilder Thysics (Two Tear Course) Synabus		
		theories of the Ising model In three, two, and one dimension,		
		Exact solutions in one dimension, Landau theory of phase		
		transition, Critical indices, Scale transformation, and		
		dimensional analysis.		
-	Unit	High-Density Gases:	15	10-12
	IV			
		Thermo-ionic and photoelectric emission, Spin Para-		
		magnetism, Landau Diamagnetism, Equation of state at very		
		high density, Equilibrium of bodies of large mass,		
		Chandrasekhar mass limit, White dwarf and neutron stars.		
Ī	Unit V	Non-Equilibrium Statistical Mechanics:	15	13-15
		Boltzmann Transport equation, Boltzmann H-theorem,		
		Equations of motion in classical mechanics, Time		
		correlation function, Linear response theory, Electrical		
		conduction, Langevin's equation and Brownian motion,		
		Debye theory of dielectric relaxation. Motion due to		
		fluctuating force. The Fokker-Planck Equation, Solution on		
		Fokker-Planck Equation.		
- 1				

Use links:

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLbkGrqpCOeWdoFHdvQ0L1yOZaGARzkBz7&si=dJeJVW1mV NhHk0lO

SIV

ALA

Books Recommended:

- Statistical Mechanics; Pathria R.K.
- Fundamental of Statistical and Thermal Physics; Reif F.
- Statistical Mechanics; Gambhir and Lokanathan.
- Statistical Mechanics; Kerson

Huang.

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Nuclear Physics – II

Course Code: MSPH - 2103

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

1. Understand the properties of particle physics, and

School of Applied Sciences, K.K. University Biharsharif Nalanda

advanced nuclear physics, high-energy

astrophysics.

unw

- 2. Explore the radioactive, alpha, beta, and gamma decay including the selection and transition rules.
- 3. Apply the quark model/theory to solve high-energy particle physics problems.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Alpha, Beta, and Gamma Decay:	15	1-3
	Gamow's Theory of alpha decays. Fermi theory of beta-		
	decay, Kurie plots, Comparative half-life, Allowed and		
	forbidden transitions, Detection, and properties of the		
	neutrino, selection rules, non-conservation of parity in		
	beta decay, gamma-decay, and selection rules. Internal		
	Conversion and Mossbauer Effect.		
Unit II	Two Body Problem:	15	4-6
	Deuteron problem, Tensor force, S and D states,		
	Neutron-Proton and proton-proton scattering, Effective		
	range theory, Spin-dependence of nuclear forces,		
	Charge independence and charge symmetry of nuclear		
	forces, Isospin formalism.		
Unit	Particle Physics/High Energy Physics:	15	7-9
III			
	Types of interaction in typical strengths, range and		
	time scales, classification of elementary particles,		
	quark hypothesis, gluons, quark-confinement, and		
	asymptotic freedom.		
	Conservation laws and Symmetry, charge-		Rumb
ofApplied	Sciences, K.K. University Biharsharif Nalanda 5		
AL.	* NALANDE	Ber	KK Univers auti, Nepura, Bi

M.Sc. Physics (Two Year Course) Syllabus

	conjugation, Parity and Time reversal, Strangeness,		
	Hypercharge, CPT theorem, SU (2) and SU (3)		
	symmetries and their applications. Gell-Mann-		
	Nishijima formula, intrinsic parity of pions,		
	resonances.		
Unit	Nuclear Astronbysics	15	10.12
Umt	Nuclear Astrophysics.	13	10-12
IV	Nuclear Astrophysics.	13	10-12
IV	Thermonuclear reactions in stars, pp chains and CNO	13	10-12
IV	Thermonuclear reactions in stars, pp chains and CNO cycle, Solar Neutrino problem, subsequent	15	10-12
IV	Thermonuclear reactions in stars, pp chains and CNO cycle, Solar Neutrino problem, subsequent thermonuclear reactions, Helium burning And onwards,	15	10-12
IV	Thermonuclear reactions in stars, pp chains and CNO cycle, Solar Neutrino problem, subsequent thermonuclear reactions, Helium burning And onwards, nucleosynthesis beyond iron, r- and s- processes.	15	10-12

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLbMVogVj5nJRvqw3zway7k3GzmUDte3a&si=qLwA_ImiMHRVpPpZ

Books Recommended:

• Introduction to high energy physics (Cambridge University Press); Donald Hill Perkins.

A

- Introductory Nuclear Physics; Samuel S.M. Wong.
- Nuclear and Particle Physics (Prentice Hall); W.E. Burcham, M. Jobes.
- Nuclear Physics; Roy R.R. & Nigam B.P.
- Structure of Nucleas; Preston M.A. and Bhaduri R.K.
- Theory of Nuclear Structure; Pal M.K.
- Nuclear Physics; Tayal D.C.

Rumw

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Practical-III

Course Code: MSPH 2104 - P

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

1. Hands-on Experience:

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption and emission, light scattering, etc.

5. Identify Research Gap:

Enable students to formulate pertinent questions to be addressed in their project work via article review, data simulation and analysis.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

S. No.	Objective/Aim
1.	Frank Hertz Experiment.
2.	Experiment with Hall apparatus.
3.	Four-Probe set up for mapping the resistivity of a large sample.
4.	Measurement of magnetoresistance of a semiconductor sample.
5.	Measurement of Susceptibility of paramagnetic solution by Quinke's tube method.
6.	Study of the energy band gap and diffusion potential of p-n junction.

Useful links:

Rumw

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

https://youtu.be/4fLbARE1cBo?si=Bb_9_8nh5TbnfYRJ

https://youtu.be/ATFs4MGrIrU?si=TXoTFYshdUbN9A5S

https://youtu.be/KU3c5WaEwkI?si=opLvPzYkgE2sVqWn

SEMESTER – IV

Year	Semester	Course Code	Course Title	L	Т	Р	С
2	4	MSPH 2201	Nanophysics and Nano-materials – I	4	1	0	5
		MSPH 2202	Condensed Matter Physics	4	1	0	5
		MSPH 2203	Nanophysics and Nano-materials – II	4	1	0	5
		MSPH 2204-P	Project and Dissertation	0	0	5	5
			Total	12	3	5	20

Nanophysics and Nanomaterials

– I

Rumb

Vice Chancellor **KK University** Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Course Code: MSPH - 3201

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify scientific phenomena and problems.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the effect of quantum confinement properties of nanomaterials and nanophysics.
- 2. Analyze the various synthesis methods and characterization techniques of nanomaterials for nano-application-based studies.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Nanophysics:	15	1-3
	Introduction to nanophysics and quantum size effect,		
	Dimensionalities and density of states, Optical and transport		
	properties of two-dimensional electron gas formed at		
	heterostructures and within novel graphene monolayers with		
	internal folds, Quantum Hall effects, Physics of one- one-		
	dimensional electron systems including carbon nanotubes and		2 45
L		Í	Commo

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

M.Sc. Physics	(Two	Year Course)	Syllabus
---------------	------	--------------	----------

	M.Sc. Physics (Two Year Course) Synabus		
	semiconductor nanowires, Fundamental Physics of zero-		
	dimensional electron system, Single electron effects, Quantum		
	dots and nanocrystals, Fundamental principles and		
	applications of scanning tunneling microscopy in the study of		
	nanophysics.		
Unit II	Synthesis of Nanomaterials:	15	4-6
	Top-down and Bottom-up approach, Synthetic procedures and		
	their significance, Types of nanomaterials synthesis processes,		
	ROHS and WEEE guideness, Physics method,		
	Photolithography, Advanced Ceramics (Solid State reaction		
	method), Ball milling method, Chemical method, Co-		
	precipitation technique, So-gel method, Soft chemical		
	technique (citrate tartrate, etc.), Hydrothermal method, Bio-		
	chemical method, Thin film technology, Thermal Evaporation		
	method, Sputtering (RF and DC), Spray pyrolysis method,		
	Spin coating method, Pulsed laser deposition method,		
	Vacuum arc discharge, Chemical vapor deposition method		
	(CVD), MOCVD, MBE, Ion beam deposition, Electron-beam		
	lithography. MBE growth of quantum dots.		
Unit	Magnetism:	15	7-9
III			
	Introductory remarks, Structural, X-ray and neutron		
	diffraction, XPS, Electron beam techniques, Scanning		
	Electron Microscope, Transmission Electron Microscope,		
	Scanning Tunnelling Microscope, Atomic Force Microscope,		
	Photoluminescence Cathode-luminescence, Electro-		
	luminescence, UV-visible and Fourier transformed infrared		
	spectrophotometry, Thermal analysis, Thermogravimetry		
	analysis, Differential Scanning Calorimeter, Dielectric and		
	Impedance analysis, Magnetic measurements.		
			-

NIVER

NALAN

*

Useful links:

https://www.csirnetphysics.in/?m=

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

Rumb

Vice Chancellor **KK University** Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLO1URmIbkyNuT_PY3KPEXeCyZ_pgeKJAT&si=bEmsEKC0I m7TA2Bo

PDF Solutions: Nanomaterials - I Solu

Books Recommended:

- Introduction to Nanotechnology (Wiley); Charles P. Poole and Frank J. Owens
- Nanotechnology: The Science of Small (Wiley); M.A. Shah, K.A. Shah
- An Introduction to Nanoscience and Nanotechnology (Wiley); Alain Nouailhat
- Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (Wiley); Edward L. Wolf
- Nanotechnology-Molecularly Designed Materials; Chow G-M & Gonsalves K.E.
- Physics of Semiconductor Nanostructures; Jain K.P.
- Nanostructures & Nanomaterials: Synthesis, Properties & Application; Cao G.

Condensed Matter Physics

Course Code: MSPH - 2202

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.

ALP

4. Participate in experiments and

independent

Runk

School of Applied Sciences, K.K. University Biharsharif Nalanda

lifelong learning projects for societal benefits.

5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the basic requirement of condensed matter physics i.e. density functional theory.
- 2. Evaluate the role of bonding, interaction, and transport phenomena between atoms and molecules.
- 3. Analyze the crystal diffraction pattern in terms of phonons.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	X-ray Diffraction Theory:	18	1-3
	Coherent and incoherent scattering, Derivation of Laue		
	equations and expression for structure factor, Data		
	reduction.		
	Crystal Structure Determination		
	The phase problem in crystallography, Electron density as		
	Fourier transform of structure factor and vice versa,		
	Techniques to solve the phase problem - Fourier and		
	Patterson methods, Heavy atom technique, Single		
	Isomorphous Replacement (SIR) and Multiple Isomorphous		
	Replacement (MIR) techniques, Anomalous scattering		
	technique, and Direct methods.		
Unit II	Experimental Techniques:	18	4-6
	UNIVERS	6	lumk
Applied	Sciences, K.K. University Biharsharif Nalanda 5		
Alla	* NALANDA	Berauti	KK University Nepura, Bihar

Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

	Wise. Thysics (Two Tear Course) Synabus		
	The Weissenberg and Precession methods, The		
	Diffractometer, Area Detector and Image Plate.		
	Fermi Surface:		
	Construction of Fermi surface, Zone schemes, Electron,		
	hole and open orbits, Cyclotron resonance. Determination		
	of Fermi surface - Quantization of orbits in the magnetic		
	field; de-Hass - van-Alfen effect; External orbits; Outline		
	of other methods.		
Unit	Phonons:	15	7-9
III			
	Harmonic crystals, Crystal potential; Harmonic and		
	adiabatic approximations; Normal modes and phonons;		
	Phonon spectrum by neutron scattering; Crystal		
	momentum. Anharmonic crystals, Anharmonicity, Lattice		
	thermal conductivity, Umklapp process; Second sound.		
Unit IV	Magnetism:	15	10-12
	Interaction of solids with magnetic fields, Magnetization		
	density and susceptibility, Calculation of atomic		
	susceptibility, Susceptibility of insulators (Larmor		
	diamagnetism), Ground state of ions with partially filled		
	shells (Hund's rule), van Vleckpara magnetism, Curie laws		
	for free ions and solids, Pauli paramagnetism, Conduction		
	electron diamagnetism, Exchange interaction,		
	Ferromagnetic domains, Anisotropy energy, Thickness and		
	energy of Bloch walls, Ising model, Bragg-Williams		
	approximation, Solution of Ising problem for a linear chain.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLO1URmIbkyNuT_PY3KPEXeCyZ_pgeKJAT&si=bEmsEKC0I m7TA2Bo

ALA

School of Applied Sciences, K.K. University Biharsharif Nalanda 5

Rumb

Books Recommended:

- Digital Systems-Principles and Applications; Tocci R.J.
- Microprocessor Architecture, Programming & Applications; Gaonkar R.S.
- Digital Computer Electronics; Malvino A.P.
- Introduction to Microprocessors; Mathur A.P.

Nanophysics and Nanomaterials-II

Course Code: MSPH - 2203

Program Outcomes:

1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.

ALP

- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to

School of Applied Sciences, K.K. University Biharsharif Nalanda

simplify the

Rumb

scientific phenomena and problems of Physical Science.

- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

- 1. Understand the optical, morphological/structural, electronic, and spintronic properties of nanomaterials.
- 2. Explore the various types of nanomaterials that are desirable for optoelectronic devices.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMEN
Unit I	Optical Properties:	15	1-3
	Coulomb interaction in nanostructures, Concept of dielectric		
	constant for nanostructures and charging of nanostructure,		
	Quasi-particles, and excitons, Excitons in direct and indirect		
	band gap semiconductor Nano-crystals, Quantitative treatment		
	of quasi-particles and excitons, charging effects, Radiative		
	processes, General formalization, absorption, emission and		
	luminescence, Optical properties of hetero-structure and		
	nanostructures.		
Unit II	Electron Transport:	15	4-6
	Electrical properties of Polymers, Ceramics, Dielectrics,		
	and Amorphous Materials, Electrical conduction in		
	Metals, Alloys and Semiconductors, Band structure,		

	Wise. Thysics (Two Tear Course) Synabus		
	effect, thermionic emission, tunneling and hoping		
	conductivity, Defects and impurities, Deep level and		
	surface defects.		
Unit	Magnetic Properties of Materials:	15	7-9
III			
	Classification of magnetic materials, Magnetic materials of		
	technical importance, Magnetization processes,		
	Superparamagnetic, Magnetic domain structure,		
	Superconductivity, Phenomenology of superconductivity.		
Unit IV	Applications:	15	10-12
	Applications of nanoparticles, quantum dots, nano-wires,		
	and thin films for photonic devices (LED, Solar Cells).		
	Single electron devices (no derivation). CNT-based		
	transistors.		
	Nano-material Devices, Quantum dots hetero-structure		
	lasers, optical switching, and optical data storage. Magnetic		
	quantum well, magnetic dots – magnetic data storage, Micro		
	Electromechanical systems (NEMS), Nano,		
	Electromechanical Systems (NEMS). Integrated optical		
	devices, SQUIDS, Spintronic devices, Ferroelectric, Pyro-		
	electric, Piezoelectric and electro-optic devices.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLO1URmIbkyNuT_PY3KPEXeCyZ_pgeKJAT&si=bEmsEKC0I m7TA2Bo

Nanophysics and PDF solutions:

Books Recommended:

School of Applied Sciences, K.K. University Biharsharif Nalanda

ALAS

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

- Introduction to Nanotechnology (Wiley); Charles P. Poole and Frank J. Owens
- Nanotechnology: The Science of Small (Wiley); M.A. Shah, K.A. Shah
- An Introduction to Nanoscience and Nanotechnology (Wiley); Alain Nouailhat
- Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (Wiley); Edward L. Wolf
- Nanotechnology-Molecularly Designed Materials; Chow G-M & Gonsalves K.E.
- Physics of Semiconductor Nanostructures; Jain K.P.
- Nanostructures & Nanomaterials: Synthesis, Properties & Application; Cao G.

Project and Dissertation

Course Code: MSPH 2204 - P

Program Outcomes:

- 1. Explore and comprehend the basic principles and fundamental concepts of Physical Science.
- 2. Evaluate the essential prerequisites and root causes to address actual problems.
- 3. Apply the principles to simplify the scientific phenomena and problems of Physical Science.
- 4. Participate in experiments and independent lifelong learning projects for societal benefits.
- 5. Expand the basic knowledge to the broader interdisciplinary area of physics.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field

measurement,

absorption,

Rumw

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

School of Applied Sciences, K.K. University Biharsharif Nalanda

light

and emission, light scattering, etc.

5. Identify Research Gap:

Enable students to formulate pertinent questions to be addressed in their project work via article review, data simulation and analysis.

Objective of the Program:

The primary objective of this program is to impart quality education both in theoretical as well as experimental physics through well-designed courses of fundamental interest such as Nanoscience, High energy physics, Photonics, Condensed matter physics, and Nuclear physics.

Syllabus details:

S. No.	Objective/Aim
1.	To study the Michelson's Interferometer.
2.	To study the Fabre-Perot Etalon.
3.	To study the Edser-Butler Plate.
4.	To study the phenomena with polarized light.
5.	Verification of Rayleigh's criterion for the limit of resolution of spectral lines using
	(a) Prism spectrum and (b) grating spectrum.
6.	To study the Edser-Butler Plate.
7.	To determine the optical constants of metal in thin film form.
8.	To study the Zeeman effect.

ALP

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)