K.K. UNIVERSITY

NALANDA, BIHAR - 803115

School of Applied Sciences

Bachelor of Science (B.Sc.)

Physics

(Three Years Full Programme)

2024-2025

PROGRAMME STRUCTURE & SYLLABUS

Under CBCS & NEP 2020

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

KK University Berauti, Nepura, Bihar Sharif

Nalanda - 803115 (Bihar)

Programme Structure B.Sc Physics

School Of Applied Science

(Aligned with CBCS & New Education Policy-2020)

S.No		
	Type Of Course	Credits
1	Core Courses	60
2	Open Elective Courses	22
	Discipline Specific Elective Courses	
3		20
4	Ability Enhancement Courses	06
5	Skill Enhancement Courses	12
	Total	120

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

B.Sc. PHYSICS

Programme/Course Structure

(For total credits: 120)

Year	Semester	Type Of Course	Course Code	Course Title	L	T	P	C
		CC	BSPH 1101	Mathematical Physics-I	3	1	0	4
		CC	BSPH 1102	Mechanics	3	1	0	4
	1	CC	BSPH 1101P	Practical I- Mathematical Physics-I	0	0	4	2
	1	CC	BSPH 1102P	Practical II- Mechanics	0	0	4	2
			Choos	e Any Two Subjects (Open Elective-I)				
4			BSMTS 1101	Maths - I	2	0	0	2
1		OEC	BSCHS 1101	Chemistry - I	2	0	0	2
			BSPHS 1103	Basic Electronics	2	0	0	2
		OEC	BSCHS 1101P	Practical – Chemistry - I	0	0	2	1
		AEC	HNL1101	Hindi	3	1	0	4
				Total	13	3	6	21
		CC	BSPH 1202	Waves and Optics	3	1	0	4
		CC	BSPH 1202P	Practical II- Waves and Optics	0	0	4	2
	2	DSEC	BSPH 1201P	Practical-I- Electricity and Magnetism	0	0	4	2
		DSEC	BSPH 1201	Electricity and Magnetism	3	1	0	4
			Choose	e Any Two Subjects (Open Elective-II)				
		OEC	BSMTS 1201	Maths - II	2	0	0	2
			BSCHS 1201	Chemistry - II	2	0	0	2
			BSPHS-1203	Fundamental Computer Application	2	0	0	2
		OEC	BSCHS 1201P	Practical – Chemistry - II	0	0	2	1
		AEC	BSEVS 1201	Environmental Sciences	2	0	0	2
		SEC	BSCS 1201	Communication Skill Workshop	2	0	0	2
				Total	12	3	7	21
		CC	BSPH 2101	Mathematical Physics-II	3	1	0	4
		CC	BSPH 2102	Thermal Physics	3	1	0	4
	3	CC	BSPH 2101P	Mathematical Physics-II	0	0	4	2
		CC	BSPH 2102P	Practical: Thermal Physics	0	0	4	2
			Choose	e Any Two Subjects (Open Elective-III)				
2		OEC	BSMTS 2101	Maths – III	2	0	0	2
_			BSPHS 2103	Electronics Devices & Circuit	2	0	0	2
			BSCHS 2101	Chemistry – III	2	0	0	2
		OEC	BSCHS 2101P	Practical – Chemistry - III	0	0	2	1
		SEC	BSPH 2103	Physics Workshop Skill	3	1	0	4
					- 10			
	<u> </u>		DODIT 2001	Total	12	2	7	21
		CC	BSPH 2201	Mathematical Physics-III	3	1	0	4
	_	CC	BSPH 2201P	Practical: Mathematical Physics-III	0	0	4	2
		DSEC	BSPH 2202	Elements of Modern Physics	2	1	0	3

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

	4	DSEC	BSPH 2202P	Practical: Elements of Modern	0	0	4	2
			Physics					
			Choose	Any Two Subjects (Open Elective-IV)		1		
		OEC	BSMTS 2201	Maths – IV	2	1	0	3
			BSCHS 2201	Chemistry – IV	2	1	0	3
			BSPHS 2203	Computational Analysis &	2	1	0	3
				Application				
		OEC	BSCHS 2201P	Practical – Chemistry - IV	0	0	2	1
		SEC	BSPH 2203	Electrical Circuits & Network Skill	2	1	0	3
						-		
				otal	11	2	6	21
3		CC	BSPH 3101	Quantum Mechanics And Applications	3	1	0	4
		CC	BSPH 3102	Solid State Physics	3	1	0	4
	5	СС	BSPH 3101P	Quantum Mechanics And Applications	0	0	4	2
		CC	BSPH 3102P	Solid State Physics	0	0	4	2
		DSEC	BSPH 3103	Digital Systems and Applications	2	1	0	3
		DSEC	BSPH 3103P	Digital Systems and Applications	0	0	2	1
		SEC	BSPH 3104	Renewable Energy Resources	2	1	0	3
			T	otal	10	3	6	19
		CC	BSPH 3201	Electromagnetic Theory	3	1	0	4
		CC	BSPH 3202	Statistical Mechanics	3	1	0	4
		CC	BSPH3 201P	Practical: Electromagnetic Theory	0	0	4	2
	6	CC	BSPH 3202P	Practical: Statistical Mechanics	0	0	4	2
	6	DSEC	BSPH 3203	Analog Systems And Applications	3	1	0	4
		DSEC	BSPH 3203P	Practical: Analog Systems And Applications	0	0	2	1
			T	otal	8	3	6	17

Total Credits: 120 (Six Semesters)

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Course Code: BSPH - 1101

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the diverse interdisciplinary mathematical applications and techniques of physics.
- 2. Evaluate the role of Calculus, mathematical series, and perfect and partial differential equations, to solve the problem of physics.
- 3. Apply the above intuitive methods to find the general solution of various exact and non-exact differential equations.
- 4. Understand the physical quantities like scalars and vectors, and their use in solving the problem based on the operator method.
- 5. Demonstrate the physical quantities-based problems, theories and fields, and integrals.
- 6. Understand the coordinate representation of different types of systems, shapes, and bodies.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

School of Applied Sciences, K.K. University Biharsharif Naland

Pro Vice Chancellor

Unit I Calculus: Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only). First Order Differential Equations and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	ENT
Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only). First Order Differential Equations and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only). First Order Differential Equations and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only). First Order Differential Equations and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
and plotting of curves. Approximation: Taylor and binomial series (statements only). First Order Differential Equations and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
series (statements only). First Order Differential Equations and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
and Integrating Factor. Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Second Order Differential equations: Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Equations with constant coefficients. Wronskian and general solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
derivatives, exact and inexact differentials. Integrating factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
factors, with a simple illustration. Constrained Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Maximization using Lagrange Multipliers. Unit II Vector Calculus: 20 5-10	
Unit II Vector Calculus: 20 5-10	
Recapitulation of vectors: Properties of vectors under	
Recapitulation of vectors: Properties of vectors under	
rotations. Scalar product and its invariance under rotations.	
Vector product, Scalar triple product, and their interpretation	
in terms of area and volume respectively. Scalar and Vector	
fields.	
Vector Differentiation: Directional derivatives and normal	
derivatives. The gradient of a scalar field and its geometrical	
interpretation. Divergence and curl of a vector field. Del and	
Laplacian operators. Vector identities, Gradient, divergence,	
curl, and Laplacian in Spherical and Cylindrical	
Coordinates.	
Vector Integration: Ordinary Integrals of Vectors. Multiple	
integrals, Jacobian. The notion of infinitesimal line, surface,	

School of Applied Sciences, K.K. University Biharsharif Nalanda

	and volume elements. Line, surface, and volume integrals of		
	Vector fields. Flux of a vector field. Gauss' divergence		
	theorem, Green's and Stokes's Theorems and		
	their applications (no rigorous proofs).		
Unit III	Orthogonal Curvilinear Coordinates:	20	11-14
	Orthogonal Curvilinear Coordinates. Derivation of		
	Gradient, Divergence, Curl, and Laplacian in Cartesian,		
	Spherical, and CylindricalCoordinate Systems.		
	Dirac Delta function and its properties:		
	Definition of Dirac delta function. Representation as the limit		
	of a Gaussianfunction and rectangular function. Properties of		
	Dirac delta function.		

Useful links:

https://www.csirnetphysics.in/?m=

 $\underline{https://youtube.com/playlist?list=PLVLoWQFkZbhUuEA7hqM_nb0chQnGQprS5\&si=_0LXnnCBZ_3gSLqlN}$

 $\underline{https://youtube.com/playlist?list=PLU6SqdYcYsfJz9FAzbgocIjlkw4NXAar-\&si=DL-Mtf9obZnnAmPM}$

Books Recommended:

- Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7th Edn., Elsevier.
- An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning.
- Differential Equations, George F. Simmons, 2007, McGraw Hill.
- Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- Mathematical Methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book.
- Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning.
- Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumb

Mechanics

Course Code: BSPH - 1102

Program Outcomes:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Rumbu Pro Vice Chancellor

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the fundamental dynamics of systems.
- 2. Evaluate and apply the dynamical law to solve the problem related to inertial and non-inertial frames.
- 3. Understand the role of work, energy, and potential in physics.
- 4. Apply the concept of work, energy, and potential to solve the problem related to conservative and non-conservative systems, rotational and vibrational dynamical systems.
- 5. Understand the core needs of a planetary system including gravitational force, energy, and momentum.
- 6. Understand the special theory of relativity under interdisciplinary physics "Classical Mechanics".

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Fundamentals of Dynamics: Reference frames. Inertial	15	1-3
	frames; Galilean transformations; Galilean invariance.		
	Review of Newton's Laws of Motion. Dynamics of a		
	system of particles. Centre of Mass. Principle of		
	conservation of momentum. Impulse. Momentum of		
	variable-mass system: motion of the rocket.	177 114000	100

School of Applied Sciences, K.K. University Biharsharif Naland

Work and Energy: Work and Kinetic Energy Theorem.	18	4-7
Conservative and non-conservative forces. Potential		
Energy. Energy diagram. Stable and unstable equilibrium.		
Elastic potential energy. Force is the gradient of potential		
energy. Work & Potential Energy. Work done by		
non-		
conservative forces. Law of conservation of Energy.		
Collisions: Elastic and inelastic collisions between		
particles. Centre of Mass and Laboratory frames.		
Rotational Dynamics: Angular momentum of a particle	15	8-11
and system of particles. Torque. Principle of conservation		
of angular momentum. Rotation about a fixed axis.		
Moment of Inertia. Calculation of moment of inertia for		
rectangular, cylindrical, and spherical bodies. The kinetic		
energy of rotation. Motion involving both translation and		
rotation.		
Elasticity: Relation between Elastic constants. Twisting		
torque on a Cylinder or Wire.		
Fluid Motion: Kinematics of Moving Fluids:		
Poiseuille's Equation for Flow of a Liquid through a		
Capillary Tube.		
Gravitation and Central Force Motion: Law of	15	12-13
gravitation. Gravitational potential energy. Inertial and		
gravitational mass. Potential and field due to spherical		
shell and solid sphere.		
Motion of a particle under a central force field. Two-body		
problem and its reduction to one-body problem and its		
solution. The energy equation and energy diagram.		
Kepler's Laws. Satellite in circular orbit and		
applications. Geosynchronous orbits. Weightlessness.		
Basic idea of global positioning system (GPS).		
		1
Physiological effects on astronauts.		
	Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force is the gradient of potential energy. Work & Potential Energy. Work done by non-conservative forces. Law of conservation of Energy. Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical, and spherical bodies. The kinetic energy of rotation. Motion involving both translation and rotation. Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness.	Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force is the gradient of potential energy. Work & Potential Energy. Work done by non-conservative forces. Law of conservation of Energy. Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical, and spherical bodies. The kinetic energy of rotation. Motion involving both translation and rotation. Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness.

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Differential equation of SHM and its solution. Kinetic		
	energy, potential energy, total energy, and their time-		
	average values. Damped oscillation. Forced oscillations:		
	Transient and steady states; Resonance, sharpness of		
	resonance; power		
	dissipation and Quality Factor.		
Unit V	Non-Inertial Systems: Non-inertial frames and fictitious	18	13-15
	forces. Uniformly rotating frame. Laws of Physics in		
	rotating coordinate systems. Centrifugal force. Coriolis		
	force and its applications. Components of Velocity and		
	Acceleration in Cylindrical and Spherical Coordinate		
	Systems.		
	Special Theory of Relativity: Michelson-Morley		
	Experiment and its outcome. Postulates of Special Theory		
	of Relativity. Lorentz Transformations. Simultaneity and		
	order of events. Lorentz contraction. Time dilation.		
	Relativistic transformation of velocity, frequency, and		
	wave number. Relativistic addition of velocities.		
	Variation		
	of mass with velocity. Massless Particles. Mass-energy		
	Equivalence. Relativistic Doppler effect. Relativistic		
	Kinematics. Transformation of Energy and Momentum.		
	Energy- Momentum Four Vector.		

Useful links:

https://www.csirnetphysics.in/?m=

https://youtube.com/playlist?list=PLvyl1YgaAepJQ4rqZpRzJS4gD7muINmNM&si=hU-t9cttJ8VYCbuz

https://youtube.com/playlist?list=PLkECWNr1MOgciH8ye_naTd7TZ8D9Aru4Q&si=WwfdCD_5GlozS7sP

 $\underline{https://youtube.com/playlist?list=PL3iiM3Tp4NySd_uEcnqOrdychB50AkQW\&si=B6gcrP7Yetec6J}\underline{PP}$

 $\frac{https://youtube.com/playlist?list=PLF_7kfnwLFCFS0k0WNHuTvjRxJFKQK5qr\&si=scQjUUQTBP}{z5YD8R}$

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

https://youtube.com/playlist?list=PLo0z5T1vb4yfAU3PjKK_di9m47FFlVru&si=Om4u4BbnA4j42T7Q

Books Recommended:

- An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.
- Mechanics, Berkeley Physics, vol. 1, C. Kittel, W. Knight, et.al. 2007, Tata McGraw-Hill.
- Physics, Resnick, Halliday, and Walker 8/e. 2008, Wiley.
- Analytical Mechanics, G.R. Fowles, and G.L. Cassiday. 2005, Cengage Learning.
- Feynman Lectures, Vol. I, R.P. Feynman, R.B. Leighton, M.Sands, 2008, Pearson Education.
- Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Practical-I

Course Code: BSPH – 1101-P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

1. Measurements of length (or diameter) using a vernier caliper, screw gauge, and traveling microscope.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 2. To study the random error in observations.
- 3. To determine the height of a building using a Sextant.
- 4. To study the motion of spring and calculate (a) spring constant, (b) g, and (c) modulus of rigidity.
- 5. To determine the moment of inertia of a flywheel.
- 6. To determine g and velocity for a freely falling body using the digital timing technique.

Useful links:

https://youtu.be/P79nYATnumo?si=4qlEkHN0FzdJ-YVn

https://youtu.be/DDL rg2vbg?si=8DEsZ2bNiGp2x8c-

https://youtu.be/G63rLJYJbJk?si=xdm-vLdkPOg13AWg

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Practical-II

Course Code: BSPH - 1102-P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

1. To determine the coefficient of viscosity of water by capillary flow method (Poiseuille's method).

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 2. To determine the Young's Modulus of a wire by optical level method.
- 3. To determine the modulus of rigidity of a wire by Maxwell's needle.
- 4. To determine the elastic constants of a wire by Searle's method.
- 5. To determine the value of g using a bar pendulum.
- 6. To determine the value of g using Kater's pendulum.

Useful links:

https://youtu.be/PT1ZWLBBHmk?si=zAEnobRmkBRwdgBc

https://youtu.be/jKlZbT7cjt4?si=rR9BxDRde9X_vJ_k

https://youtu.be/WMQZWBi7fbE?si=oHjkjEzl42VZdAyj

https://youtu.be/YoF7RuBZIpM?si=DbC7Dv1YTG7z7Gtn

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

MATHEMATICS –I

Course Code: BSMT-S- 1101

UNIT	CONTENTS	Lecture Hours	WEEK
			ALLOTMENT
Unit I	Real-valued functions are defined on an interval, the	15	1-3
	limit of a function (Cauchy's definition). Algebra of		
	limits. Continuity of a function at a point and in an		
	interval. Acquaintance (on proof) with the important		
	properties of continuous functions on closed intervals.		
	Statement of the existence of inverse function of a		
	strictly monotone function and its continuity.		
Unit II	Derivative – its geometrical and physical interpretation.	15	4-7
	Sign of derivative-Monotonic increasing and decreasing		
	functions. Relation between continuity and derivability.		
	Differential – application in finding approximation.		
	Successive derivative – Leibnitz's		
Unit	Matrices of Real Numbers: Equality of matrices.	15	8-11
III	Addition of Matrices. Multiplication of a matrix by		
	scalar. Multiplication of matrices _ Associative		
	properties. Transpose of matrix – Its properties. The		
	inverse of a non-singular matrix. Elementary operations		
	on Skew – Symmetric matrices. Scalar matrix.		
	Orthogonal matrix. Elementary operations on matrices.		
	The rank of a matrix: Determination of rank either by		
	considering minors or by the sweep-out process.		
	Consistency and solution of a system of linear equations		
	with not more than 3 variables by matrix method.		

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

CHEMISTRY - I

Course Code: BSCH-S -1101

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
	Physical Chemistry	15	1-3
	Gaseous State		
	(a) Kinetic Theory of gases, Derivation of the kinetic gas		
	equation, deduction of gas law, calculation of gas		
	constants, and kinetic theory.		
	(b) Types of solids, crystal forces, the law of constancy of		
	angles, seven crystal systems, law of rational indices,		
	Bragg's Law, Lattice energy, Born-Haber cycle		
Unit I	Thermochemistry		
	(a) Heat in chemical reactions, Reaction enthalpy, standard		
	enthalpy changes.		
	(b) Hess Law, Kirchoff Law		
	(c) Bond energy and determination		
	Ionic Equilibrium		
	(a) Ionic Product of water, pH, pK _a , pK _b , pK _w		
	(b) Buffer solution, Idea of buffer solution in everyday life.		
	(c) Solubility product and it application in salt analysis.		
	(d) Specific conductance, Molar conductance, Equivalent		
	conductance.		
	Inorganic Chemistry	15	4-7
	Atomic Structure and Bonding		
	(a) Features of H-spectra and Bohr's theory.		
	(b) Shapes of orbital's and their labeling, idea of quantum		
	number		
	(c) Pauli's Exclusion Principle, Hund's rule, Aufbau Principle		
Unit II	(d) Electronic configuration of elements		
	(e) Idea of ionic and covalent bonds, Ionization potential,	Ri	ink

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor KK University

Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

	Electro negativity, Electron affinity, Fajan's rule		
	Chemistry of the following elements		
	Li, Sn, Fluorine, Chlorine, Iodine		
	Organic Chemistry	15	8-12
	Structure and Mechanism		
Unit III	(a) Hybridization, bond angle, bond length, idea of bonds.		
	(b) Inductive effect, electrometric effect, mesmeric effect		
	(c) Bond fission and products.		

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

CHEMISTRY -I Lab

Course Code: BSCH –S- 1101 (P)

PRACT	PRACTICAL			
1.	Inorganic chemistry			
	Volumetric Analysis			
	(a) Acidimetric and alkalimetry			
	(b) Use of Potassium permanganate and potassium dichromate			
	(c) Iodometry			
2.	Note book and Viva voce.			

SEMESTER - II

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Year	Semester	Course Code	Course Title	L	T	P	C
1	2	BSPH 1201	Electricity and Magnetism	3	1	0	4
		BSPH 1202	Waves and Optics	3	1	0	4
		BSPH 1201-P	Practical-I- Electricity and Magnetism	0	0	3	3
		BSPH 1202-P	Practical II- Waves and Optics	0	0	3	3
		BSMT-S 1201	Maths - II	3	0	0	3
		BSCH-S 1201	Chemistry - II	3	0	0	3
		BSCH-S 1201-P	Practical – Chemistry - II	0	0	2	2
		ENL 1201	English - I	2	0	0	2
			Total	14	2	10	24

Electricity and Magnetism

Course Code: BSPH - 1201

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the fundamental knowledge of electromagnetism.
- 2. Analyze the need for electromagnetism to explain the energy storage devices like capacitors.
- 3. Evaluate various properties and concepts of electricity and magnetism, by applying them to application-based study, including Biot-Savart law, Ampere's law, etc.
- 4. Understand the mechanism of current and electricity (basic electronics), through Kirchoff's model (or closed circuit model).
- 5. Apply the closed circuit law and network model to evaluate current and voltage from various circuits including, resistor, capacitor, inductance, etc.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Electric Field and Electric Potential	15	1-3
	Electric field: Electric field lines. Electric flux.		
	Gauss' Law with applications to charge		
	distributions with spherical, cylindrical, and planar		
	symmetry.		
	Conservative nature of Electrostatic Field.		
	Electrostatic Potential. Laplace's and Poisson's		
	equations. The Uniqueness Theorem. Potential and		
	Electric Field of a dipole. Force and Torque on a		
	dipole.		
	Electrostatic energy of the system of charges.		
	Electrostatic energy of a charged sphere.		
	Conductors in an electrostatic Field. Surface charge		
	and force on a conductor. The capacitance of a		
	system of charged conductors. Parallel-plate		
	capacitor. The capacitance of an isolated conductor.		
	Method of Images and its Application to (1) Plane		
	Infinite Sheet and (2) Sphere.		
	Dielectric Properties of Matter: Electric Field in		
	Matter. Polarization, Polarization Charges. Electrical		
	Susceptibility and Dielectric Constant. Capacitor		
	(parallel plate, spherical, cylindrical) filled with		
	dielectric. Displacement vector D. Relations		
	between		Rumb
	E, P, and D. Gauss' Law in dielectrics.		Kumh

School of Applied Sciences, K.K. University Biharsharif Nalanda

Unit II	Magnetic Field: Magnetic force between current	15	4-6
	elements and definition of Magnetic FieldB. Biot-		
	Savart's Law and its simple applications: straight		
	wire and circular loop. Current Loop as a Magnetic		
	Dipole and its		
	Dipole Moment (Analogy with Electric Dipole).		
	Ampere's Circuital Law and its application to (1)		
	Solenoid and (2) Toroid. Properties of B: curl and		
	divergence. Vector Potential. Magnetic Force on (1)		
	point charge (2) current carrying wire (3) between		
	current elements. Torque on a current		
	loop in a uniform Magnetic Field.		
Unit	Magnetic Properties of Matter: Magnetization	15	7-9
III	vector (M). Magnetic Intensity(H). Magnetic		
	Susceptibility and permeability. Relation between		
	B, H, M. Ferromagnetism. B-H curve and		
	hysteresis.		
	Electromagnetic Induction: Faraday's Law. Lenz's		
	Law. Self Inductance and Mutual Inductance.		
	Reciprocity Theorem. Energy is stored in a		
	Magnetic		
	Field. Introduction to Maxwell's Equations. Charge		
	Conservation and Displacement current.		
Unit	Electrical Circuits: AC Circuits: Kirchhoff's laws	15	10-12
IV	for AC circuits.Complex Reactance and Impedance.		
	Series LCR Circuit: (1) Resonance, (2) Power		
	Dissipation (3) Quality Factor, and (4) Band		
	Width. Parallel LCR Circuit.		
Unit V	Network theorems: Ideal Constant-voltage and	15	13-15
	Constant-current Sources. Network Theorems:		
	Thevenin theorem, Norton theorem, Superposition		
	theorem, Reciprocity theorem, Maximum Power		
	Transfer theorem. Applications to DC circuits.		
	Ballistic Galvanometer: Torque on a Current Loop.		Pumber
	MIVERO		Kurun

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Ballistic Galvanometer: Current and Charge	
	Sensitivity. Electromagnetic damping.Logarithmic	
	damping. CDR.	

Useful links:

https://www.csirnetphysics.in/?m=

https://youtube.com/playlist?list=PLyNtcVp3QSXFKjsJBsgQjk2wdlWxNr6LY&si=hu91IbaPv9QlixK2 https://youtube.com/playlist?list=PLvyl1YgaAepLb1TJOU1JFq26OScZJr17e&si=aYlGm_OF_E8mUHH1

Books Recommended:

- Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata
 McGraw.
- Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education.
- Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
- Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.
- Electricity and Magnetism, J.H.Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Waves and Optics

Course Code: BSPH - 1202

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the various properties of waves like superposition, interference, etc.
- 2. Explore and analyze the concept of superposition to apply a solution of normal mode of vibrations, stretch string, etc.
- 3. Understand the optics via the mechanism of light interference.
- 4. Understand the construction and working principle of various spectroscopes and interferometers.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Superposition of Collinear Harmonic oscillations:	20	1-4
	JHIVERS	Ku	imb

School of Applied Sciences, K.K. University Biharsharif Nalanda

	different frequencies (Beats). Superposition of N collinear		
	Harmonic Oscillations with (1) equal phase differences		
	and (2) equal frequency differences.		
	Superposition of two perpendicular Harmonic		
	Oscillations: Graphical and Analytical Methods. Lissajous		
	Figures (1:1 and 1:2) and their uses. Wave Motion: Plane		
	and Spherical Waves. Longitudinal and TransverseWaves.		
	Plane Progressive (Travelling) Waves. Wave Equation.		
	Particle and Wave Velocities.		
Unit II	Differential Equation:	20	5-8
	The pressure of a Longitudinal Wave. EnergyTransport.		
	Intensity of Wave. Water Waves: Ripple and Gravity		
	Waves. Velocity of Waves: Velocity of Transverse		
	Vibrations of StretchedStrings. Velocity of Longitudinal		
	Waves in a Fluid in a Pipe. Newton'sFormula for		
	Velocity of Sound. Laplace's Correction.		
	Superposition of Two Harmonic Waves:		
	Standing (Stationary) Waves in a String: Fixed and Free		
	Ends. Analytical Treatment. Phase and Group Velocities.		
	Changes with respect to Position and Time. Energy of		
	Vibrating String. Transfer of Energy. Normal Modes of		
	Stretched Strings. Plucked and Struck Strings. Melde's		
	Experiment. Longitudinal Standing Waves and Normal		
	Modes. Open and Closed Pipes. Superposition of N		
	Harmonic Waves.		
Unit	Wave Optics:	20	9-12
III	Electromagnetic nature of light. Definition and properties		
	of the wavefront Huygans Principle Temporal and		
	of the wavefront. Huygens Principle. Temporal and		

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index.		
Unit IV	Interferometer:	20	13-15
	Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry- Perot interferometer. Diffraction: Kirchhoff's Integral Theorem, Fresnel-Kirchhoff's Integral formula and its application to rectangular slit. Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating.		
	Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of		
	Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit, and a wire.		

Useful links:

https://www.csirnetphysics.in/?m=

 $\underline{https://youtube.com/playlist?list=PLF_7kfnwLFCHr4eZATw4YURnGNr6mwF5R\&si=Wh308h2zr9}$

<u>dVzXUR</u>

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

https://youtube.com/playlist?list=PL_A4M5IAkMac8lrmOeJ3yuiqPPNXxnh6Q&si=GRJel7Si9r_Nd-M6

Books Recommended:

- Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Practical -I

Course Code: BSPH 1201-P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumh

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

- 1. Use a Multi-meter for measuring (a) Resistances, (b) AC and DC voltages, (c) DC current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the characteristics of a series RC circuit.
- 3. To determine an unknown low resistance using a potentiometer.
- 4. To determine an unknown low resistance using Carey Foster's bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx).
- 7. To verify Thevenin and Norton's theorem.
- 8. To verify the Superposition and Maximum power transfer theorems.
- 9. To determine the inductance of a coil by Anderson's bridge.
- 10. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q.

Useful links:

https://youtu.be/5MOtPOqC0jI?si=kca8r8R9Xev_rjAM

https://youtube.com/playlist?list=PLFGOC-

ueNbIcGRG1tXYHDVh8ZM7xi9Wak&si=MSVvNZgYLV3Pua1G

https://youtu.be/PfBQEhLKDRc?si=je5bUna9Id81N7Be

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Practical-II

Course Code: BSPH 1202 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

- 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 –T law.
- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Familiarization with Schuster's focusing and determination of the angle of the prism.
- 5. To determine the refractive index of the material of a prism using a sodium source.
- 6. To determine the dispersive power and Cauchy constants of the material of a prism using a mercury source.
- 7. To determine the wavelength of sodium source using Michelson's interferometer.
- 8. To determine the wavelength of sodium light using Fresnel Biprism.
- 9. To determine the wavelength of sodium light using Newton's rings.
- 10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped film.

Useful links:

https://youtu.be/QayPYBAdEsM?si=n6nz9TeZU6ymJzox

https://youtu.be/6O1d19Rd7ys?si=xZyJQY32rFPJrzQB

https://youtu.be/e4poHiwoTH8?si=GDZRWmlO1vwKdROj

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

MATHEMATICS –II

Course Code: BSMT-S- 1201

UNIT	CONTENTS	Lecture Hours	WEEK
			ALLOTMENT
Unit	Differential equations of first order and first	15	1-5
I	degree: Statement of existence theorem.		
	Separable, Homogeneous and Exact differential		
	equations. Condition of exactness, Integrating		
	factor. Rules of finding integrating factor,		
	(statement of relevant results only).		
Unit	First order linear differential equation and	15	5-10
II	Bernoulli Equation Integrating factor (Statement		
	of relevant results only). Equations reducible to		
	first order linear equations. Equations of first		
	order but not of first degree. Clairaut's equation:		
	General and singular solutions. Higher order		
	linear equations with constant coefficients:		
	Complementary function Particular Integral.		
	Method of undermined coefficients, Symbolic		
	operator D. Method of variation of parameters.		
Unit	Order and degree of partial differential equations,	15	11-15
III	Concept of linear and non-linear partial		
	differential equations, Formation of first order		Rumb

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

partial differential equations, Linear partial		
differential equation of first order, Lagrange's		
method, Charpit's method.		

CHEMISTRY –II

Course Code: BSCH -S- 1201

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
	Physical Chemistry	15	1-5
	Chemical Kinetics		
	(a) Rate of reaction, order, and molecularity.		
	(b) Expression for the specific rate constant of first-order		
	reaction.		
Unit I	(c) Half-life period and Units		
	Colligative Properties		
	(a) Osmosis and its determination.		
	(b) Vapor Pressure		
	(c) Raoult's law of lowering vapor pressure		
	(d) Relation between osmotic pressure and lowering of vapor		
	pressure.		
	Inorganic Chemistry	15	6-10
Unit II	Principles involved in the volumetric and gravimetric estimation of		
	Cu and Fe.		
	Isotopes: Brief idea of detection and separation, Radiocarbon		
	dating.	0	40

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Organic Chemistry	15	11-15
Nomenclature		
(a) IUPAC Nomenclature of aliphatic and aromatic compounds		
Chemistry of monohydric alcohol and Grignard reagent		
Idea of purification of compounds, Chromatography		
	Nomenclature (a) IUPAC Nomenclature of aliphatic and aromatic compounds Chemistry of monohydric alcohol and Grignard reagent	Nomenclature (a) IUPAC Nomenclature of aliphatic and aromatic compounds Chemistry of monohydric alcohol and Grignard reagent

CHEMISTRY - II Lab

Course Code: BSCH -S- 1201

PRACT	CAL
1.	Organic chemistry
	Detection of nitrogen sulfur and halogen in organic compounds
	Detection of the following functional group of organic compounds
	(a) OH (Phenolic) (b) CHO(c) = O (d) COOH (e) NH_3 and NO_2
2.	Note book and Viva voce.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

ENGLISH - I

Course Code: ENL-1201

I. Prose:

- 1. The Bet Anton Chekov
- 2. Socrates and the Schoolmaster F. L. Brayne
- 3. An Astrologer's Day R. K. Narayan
- 4. The Gift of the Magi O' Henry
- 5. With the Photographer Stephen Leacock

II. Spoken Communication:

- 1) Meeting People, Exchanging Greetings and Taking Leave
- 2) Introducing Yourself
- 3) Introducing People to Others
- 4) Answering the Telephone and Asking for Someone
- 5) Dealing with a Wrong Number
- 6) Taking and Leaving Messages
- 7) Making Inquiries on the Phone
- 8) Calling for Help in an Emergency
- **III.** Grammar and Vocabulary: Articles, prepositions, modal auxiliaries, antonyms, synonyms, and one-word substitutes.

IV. Written Communication: Summarizing

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

SEMESTER - III

Year	Semester	Course Code	Course Title	L	T	P	C
2	3	BSPH 2101	Mathematical Physics-II	3	1	0	4
		BSPH 2102	Thermal Physics	3	1	0	4
		BSPH 2101-P	Mathematical Physics-II	0	0	3	3
		BSPH 2102-P	Practical: Thermal Physics	0	0	3	3
		BSMT-S 2101	Maths - III	3	0	0	3
		BSCH-S 2101	Chemistry - III	3	0	0	3
		BSCH-S 2101-P	Practical – Chemistry - III	0	0	2	2
		HNL 2101	Hindi - II	2	0	0	2
			Total	14	2	10	24

Mathematical Physics - II

Course Code: BSPH - 2101

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 1. Understand the use of periodic functions in mathematical physics.
- 2. Identify, analyze, and interpret the periodic sine and cosine functions.
- 3. Apply periodic function methods to find the solution of Fourier series.
- 4. Understanding the various differential equations in series form such as Bessel's, Legendre, Laugree, etc.
- 5. Apply the mathematical concept of exact and non-exact differential equations to find the general solution.
- 6. Understand the concept of error estimation through the Gamma function for various periodic functions.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Fourier Series:	20	1-4
	Periodic functions. Orthogonality of sine and cosine		
	functions, Dirichlet Conditions (Statement only).		
	Expansion of periodic functions in a series of sine and		
	cosine functions and determination of Fourier		
	coefficients. Complex representation of Fourier series.		
	Expansion of functions with the arbitrary period.		
	Expansion of non-periodic functions over an interval.		
	Even and odd functions and their Fourier expansions.		
	Application. Summing of Infinite Series. Term-by-Term		
	differentiation and integration of Fourier Series. Parseval		
	Identity.		

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor KK University

Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Unit II	Frobenius Method and Special Functions:	20	5-10	-
	Singular Points of Second Order Linear Differential			
	Equations and their importance. Frobenius method and its			
	applications to differential equations. Legendre, Bessel,			
	Hermite and Laguerre Differential Equations. Properties			
	of Legendre Polynomials: Rodrigues Formula, Generating			
	Function, Orthogonality. Simple recurrence relations.			
	Expansion of function in a series of Legendre			
	Polynomials. Bessel Functions of the First Kind:			
	Generating Function, simple recurrence relations. Zeros			
	of Bessel Functions and Orthogonality.			
Unit	Some Special Integrals: Beta and Gamma Functions	20	11-15	
III	and the Relation between them. Expression of			
	Integrals in Terms of Gamma Functions. Error			
	Function (Probability Integral).			
	Theory of Errors: Systematic and Random Errors.			
	Propagation of Errors. Normal Law of Errors. Standard			
	and Probable Error.			
	Partial Differential Equations: Solutions to partial			
	differential equations, using separation of variables:			
	Laplace's Equation in problems of rectangular, cylindrical,			
	and spherical symmetry. Wave equation and its solution			
	for			
	vibrational modes of a stretched string, rectangular and			
	circular membranes.			

Useful links:

https://www.csirnetphysics.in/?m=

 $\underline{https://youtube.com/playlist?list=PLU6SqdYcYsfK_FysPwDqaoUKhTqms_aEg\&si=sLN-p-faYvnuEaRN}$

 $\underline{https://youtube.com/playlist?list=PLNsg8byHMYYiLhuif1nd9b_shRkIQ0DK8\&si=FldFXFagKVur\underline{KmXi}}$

Books Recommended:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.
- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books.

Thermal Physics

Course Code: BSPH - 2102

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand thermodynamics as the logical consequences of the postulates of thermal physics.
- 2. Apply the concepts and laws of thermal physics to solve problems like gases, potential, Maxwell's equations, and real gas problems.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumh

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Introduction to Thermodynamics	15	1-3
	Zeroth and First Law of Thermodynamics: Extensive and		
	intensive Thermodynamic Variables, Thermodynamic		
	Equilibrium, Zeroth Law of Thermodynamics & Concept		
	of Temperature, Concept of Work & Heat, State		
	Functions, First Law of Thermodynamics and its		
	differential form, Internal Energy, First Law & various		
	processes, Applications of First Law: General Relation		
	between CP and CV, Work Done during Isothermal and		
	Adiabatic Processes, Compressibility and Expansion Co-		
	efficient.		
Unit II	Entropy:	15	4-6
	Concept of Entropy, Clausius Theorem. Clausius		
	Inequality, Second Law of Thermodynamics in terms of		
	Entropy. The entropy of a perfect gas. Principle of		
	Increase of Entropy. Entropy Changes in Reversible and		
	Irreversible processes with examples. Entropy of the		
	Universe. Entropy Changes in Reversible and Irreversible		
	Processes. Principle of Increase of Entropy. Temperature—		
	Entropy diagrams for Carnot's Cycle. Third Law of		
	Thermodynamics. Unattainability of Absolute Zero.		
Unit	Thermodynamic Potentials:	15	7-9
III			
	Extensive and Intensive Thermodynamic Variables.		
	Thermodynamic Potentials: Internal Energy, Enthalpy,		
	Helmholtz Free Energy, Gibb's Free Energy. Their		
	Definitions, Properties, and Applications. Surface Films and		
	Variation of Surface Tension with Temperature. Magnetic	0	40
	Work, Cooling due to adiabatic demagnetization, First and	K	ink
	()	500	

School of Applied Sciences, K.K. University Biharsharif Nalanda

	second order Phase Transitions with examples, Clausius		
	Clapeyron Equation and Ehrenfest equations.		
Unit	Maxwell's Thermodynamic Relations:	15	10-12
IV			
	Derivations and applications of Maxwell's Relations,		
	Maxwell's Relations:(1) Clausius Clapeyron equation, (2)		
	Values of Cp-Cv,		
	Tds Equations, (4) Joule-Kelvin coefficient for Ideal and		
	Van der Waal Gases, (5) Energy equations, (6) Change of		
	Temperature during AdiabaticProcess.		
	Kinetic Theory of Gases		
	Distribution of Velocities: Maxwell-Boltzmann Law of		
	Distribution of Velocities in an Ideal Gas and its		
	Experimental Verification. Doppler Broadening of		
	Spectral Lines and Stern's Experiment. Mean, RMS, and		
	Most Probable Speeds. Degrees of Freedom. Law of		
	Equipartition of Energy (No proof required). Specific		
	heats of Gases.		
	Molecular Collisions: Mean Free Path. Collision		
	Probability. Estimates of Mean Free Path. Transport		
	Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal		
	Conductivity and (3) Diffusion. Brownian Motion and		
	its		
	Significance.		
Unit V	Real Gases:	15	13-15
	Behavior of Real Gases: Deviations from the Ideal Gas		
	Equation. The Virial Equation. Andrew's Experiments on		
	CO ₂ Gas. Critical Constants. Continuity of Liquid and		
	Gaseous State. Vapor and Gas. Boyle Temperature. Van		
	der Waal's Equation of State for Real Gases. Values of		
	Critical Constants. Law of Corresponding States.	0	100

School of Applied Sciences, K.K. University Biharsharif Nalanda

Comparison with Experimental Curves. P-V Diagrams.	
Joule's Experiment. Free Adiabatic Expansion of a Perfect	
Gas. Joule-Thomson Porous Plug Experiment. Joule-	
Thomson Effect for Real and Van der Waal Gases.	
Temperature of Inversion. Joule- Thomson Cooling.	

Use links:

https://www.csirnetphysics.in/?m=

 $\underline{https://youtube.com/playlist?list=PLF_7kfnwLFCFPfN4TGeJt1PQpJd3MG6Zz\&si=GsY-4M0-LMXxyYY-}$

https://youtube.com/playlist?list=PL9RcWoqXmzaK6AHCCyL_J6gqc02RN-w-D&si=ElV8s97r8e FQB

Books Recommended:

- Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Practical - I

Course Code: BSPH 2101-P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures. Rumb

3. Experimental Design and

Execution:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

- 1. To determine the wavelength of (1) Na source and (2) spectral lines of Hg source using a plane diffraction grating.
- 2. To determine the dispersive power and resolving power of a plane diffraction grating.
- 3. To provide students the capacity to refine the mathematical abilities required to tackle issues in advanced physics classes.
- 4. The student must comprehend the fundamentals of integral transforms, Laplace transforms, coordinate systems, and Dirac delta functions.
- 5. To study the response curve of a parallel LCR circuit and determine (a) Anti-resonant frequency and (b) Quality factor Q.
- 6. Measurement of charge and current sensitivity and CDR of ballistic galvanometer.
- 7. Determine a high resistance by leakage method using a ballistic galvanometer.
- 8. To determine the self-inductance of a coil by Rayleigh's method.
- 9. To determine the mutual inductance of two coils by the absolute method.

Useful links:

https://youtu.be/QayPYBAdEsM?si=n6nz9TeZU6ymJzox

https://youtu.be/6O1d19Rd7ys?si=xZyJQY32rFPJrzQB

https://youtu.be/e4poHiwoTH8?si=GDZRWmlO1vwKdROj

School of Applied Sciences, K.K. University Biharsharif Naland

Pro Vice Chancellor

KK University Berauti, Nepura, Bihar Sharif

Nalanda - 803115 (Bihar)

Practical-II

Course Code: BSPH 2102 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

- 1. To determine the Mechanical Equivalent of Heat, J. by Callender and Barne's constant flow method.
- 2. To determine the coefficient of thermal conductivity of Cu by Searl's apparatus.
- 3. To determine the coefficient of thermal conductivity of Cu by Angstrom's method.
- 4. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.
- 5. To determine the temperature coefficient of resistance by platinum resistance thermometer (PRT).
- 6. To study the variation of thermo-emf of a thermocouple with a difference of temperature of its two junctions.
- 7. To calibrate a thermocouple to measure temperature in a specified range using (1) Null method, (2) direct measurement using Op-Amp difference amplifier and to determine neutral temperature.

Useful links:

https://youtu.be/9XeosJZ3mIc?si=p84IfesDhlRTGHAV

https://youtu.be/YhUha8c-B2I?si=5CyZuD2qzopO8B6L

https://youtu.be/8z9tSDmmwIw?si=YWLGaUXoMtKC8I17

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

KK University Berauti, Nepura, Bihar Sharif

Nalanda - 803115 (Bihar)

MATHEMATICS –III

Course Code: BSMT-S- 2101

UNIT	CONTENTS	Lecture Hours	WEEK
			ALLOTMENT
Unit	Introduction of Group Theory: Definition and	15	1-5
I	examples taken from various branches (example		
	from number system, roots of Unit, 2x2 real		
	matrices, non-singular real matrices of a fixed		
	order). Elementary properties using the		
	definition of Group. Definition and examples of		
	sub-group - Statement of necessary and		
	sufficient condition and its applications.		
	Definitions and examples of (i) Ring, (ii) Field,		
	(iii) Sub-ring, (iv) Sub-field.		

School of Applied Sciences, K.K. University Biharsharif Nalanda

Rumb.

Bro Vice Chancellor

Unit	Concept of Vector space over a field: Examples,	15	5-10	
II	Concepts of Linear combinations, Linear			
	dependence and independence of a finite number			
	of vectors, Sub-space, concepts of generators,			
	and basis of a finite-dimensional vector space.			
	Problems on formation of the basis of a vector			
	space (No proof required).			
Unit	Linear transformations, null space, range, rank	15	11-15	
III	and nullity of a linear transformation, matrix			
	representation of a linear transformation, change			
	of coordinate matrix (simple problems). Algebra			
	of linear transformations. Eigenvalues,			
	eigenvectors, and characteristic equations of a			
	matrix. Cayley-Hamilton theorem and its use in			
	finding the inverse of a matrix.			

CHEMISTRY –III

Course Code: BSCH -S- 2101

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
	Physical Chemistry	18	1-5
	States of Matter		
	(a) Van der Waals equation, critical constants, collision		
Unit I	frequency, mean free path.		
	(b) Idea of lattice planes, stoichiometric and non-		
	stoichiometric defects in simple ionic solid		
	Thermodynamics		
	(a) Extensive and Intensive system.		
	(b) First and second law of thermodynamics	0	40
	(c) Carnot cycle	Kur	rk

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Inorganic Chemistry	18	6-10
	Atomic structure and bonding		
	Atomic structure and bonding		
Unit II	(a) De Broglie waves		
	(b) Schrodinger wave equation		
	(c) The idea of overlap and hybridization		
	(d) Metallic bonding		
	(e) Double salts and complex salts		
	(f) Werner's theory		
	Introduction to the transition metal complex		
	Variable oxidation states, magnetism		
	Organic Chemistry	18	11-15
	Structure and Mechanism		
	(a) Different types of isomerism		
Unit III	(b) Elementary and nucleophilic substitution at saturated		
	carbon		
	Natural Products		
	(a) Carbohydrates		
	(b) Elementary idea of Alkaloids and Terpenoids		

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

CHEMISTRY - III Lab

Course Code: BSCH-S - 2101

PRA	ACTIC	CAL
1	1.	Inorganic chemistry
		Qualitative inorganic analysis of mixtures containing Acid and Basic radicals
		Basic radicals: Pb ²⁺ , Cu ²⁺ , Fe ²⁺ , Fe ³⁺ , Cr ³⁺ , Ni ²⁺ , Co ²⁺ , Zn ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺
		Acid radicals: CO ₃ ²⁻ , SO ₃ ²⁻ , SO ₄ ²⁻ , NO ₂ ⁻ , NO ₃ ⁻
2	2.	Note book and Viva voce.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

SEMESTER - IV

Year	Semester	Course Code	Course Title	L	T	P	C
2	4	BSPH 2201	Mathematical Physics-III	3	1	0	4
		BSPH 2202	Elements of Modern Physics	3	1	0	4
		BSPH 2201-P	Practical: Mathematical Physics-III	0	0	3	3
		BSPH 2202-P	Practical: Elements of Modern Physics	0	0	3	3
		BSMT-S 2201	Maths - IV	3	0	0	3
		BSCH-S 2201	Chemistry - IV	3	0	0	3
		BSCH-S 2201-P	Practical – Chemistry - IV	0	0	2	2
		ENL 2201	English - II	2	0	0	2
			Total	14	2	10	24

 ${\bf Mathematical\ Physics\ - III}$

Course Code: BSPH - 2201

Program Outcomes:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the role of complex analysis to solve the problem of physics.
- 2. Analyze and evaluate the application of complex analysis in analytic and singular functions.
- 3. Understand various integral transformations that can be used to find solutions of Laplace transformation and integral transformation.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Complex Analysis	20	1-4
	Brief Revision of Complex Numbers and their Graphical		
	Representation. Euler's formula, De Moivre's theorem,		
	Roots of Complex Numbers. Functions of Complex		
	Variables. Analyticity and Cauchy-Riemann Conditions.		
	Examples of analytic functions. Singular functions: poles		
	and branch points, order of singularity, branch cuts.		
	Integration of a function of a complex variable. Cauchy's		1
	Inequality. Cauchy's Integral formula. Simply and	Kı	imb

School of Applied Sciences, K.K. University Biharsharif Nalanda

	multiply connected regions. Laurent and Taylor's		
	expansion. Residues and Residue Theorem.		
	Application in solving Definite Integrals.		
Unit II	Integrals Transforms:	20	5-10
	Fourier Transforms: Fourier Integral theorem. Fourier		
	Transform. Examples. Fourier transform of trigonometric,		
	Gaussian, finite wave train & other functions.		
	Representation of Dirac delta function as a Fourier		
	Integral. Fourier transform of derivatives, Inverse Fourier		
	transform, Convolution theorem. Properties of Fourier		
	transform (translation, change of scale, complex		
	conjugation, etc.). Three-dimensional Fourier transforms		
	with examples. Application of Fourier Transforms to		
	differential equations: One dimensional Wave and		
	Diffusion/Heat Flow Equations.		
Unit	Laplace Transforms Laplace Transform (LT) of	18	11-15
III	Elementary functions. Properties of LTs: Change of Scale		
	Theorem, Shifting Theorem. LTs of Derivatives and		
	Integrals of Functions, Derivatives and Integrals of LTs.		
	LT of Unit Step function, Dirac Delta function, Periodic		
	Functions. Convolution Theorem. Inverse LT.		
	Application of Laplace Transforms to Differential		
	Equations: Damped Harmonic Oscillator, Simple		
	Electrical Circuits.		

Useful links:

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

 $\underline{https://youtube.com/playlist?list=PLU6SqdYcYsfKwY6IPDCshf1kKlk1CCd7d\&si=53ewhOZ4Yog}\\ \underline{Bkfhr}$

 $\frac{https://youtube.com/playlist?list=PLNKD1qB9ppttQLUfgB-lmdENDJuV1nODX\&si=PKr2KLTRDNwC5-DT$

Books Recommended:

• Mathematical Methods for

Physics and

Pro Vice Chancellor

Rumb

KK University
Berauti, Nepura, Bihar Sharif
Nalanda - 803115 (Bihar)

School of Applied Sciences, K.K. University Biharsharif Nalanda

Engineers, K.F Riley, M.P. Hobson and S.

- J. Bence, 3rd ed., 2006, Cambridge University Press.
- Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications.
- Complex Variables, A.S.Fokas & M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press.
- Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill.
- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.

Elements of Modern Physics

Course Code: BSPH - 2202

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumb

- 1. Understand the concept of quantum theory and its importance.
- 2. Apply Schrodinger's wave equations for non-relativistic particles.
- 3. Understand radioactive processes like alpha, beta, gamma decay, and nucleus stability.
- 4. Understand the fundamentals of atomic and nuclear physics and the principles and properties of lasers.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Planck's quantum, Planck's constant, and light as a	18	1-3
	collection of photons; Blackbody Radiation: Quantum		
	theory of Light; Photo-electric effect and Compton		
	scattering. De Broglie wavelength and matter waves;		
	Davisson- Germer experiment. Wave description of		
	particles by wave packets. Group and Phase velocities and		
	the relation between them. Two-Slit experiment with		
	electrons. Probability. Wave amplitude and wave		
	functions.		
	Position measurement- gamma-ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from Wave Packets impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle-		
	application to virtual particles and range of interaction.		
Unit II	Two slit interference experiment with photons, atoms, and particles; linear superposition principle as a	18 Ru	mW ⁴⁻⁶
	and particles, inical superposition principle as a	1/	

School of Applied Sciences, K.K. University Biharsharif Nalanda

	consequence; Matter waves and wave amplitude;		
	Schrodinger equation for non-relativistic particles;		
	Momentum and Energy operators; stationary states;		
	physical interpretation of a wave function, probabilities,		
	and normalization; Probability and probability current		
	densities in one dimension.		
	One dimensional infinitely rigid box- energy eigenvalues		
	and eigenfunctions, normalization; Quantum dot as an		
	example; Quantum mechanical scattering and tunneling in		
	one dimension across a step potential & rectangular		
	potential barrier.		
Unit	Size and structure of the atomic nucleus and its relation	15	7-9
III	with atomic weight; Impossibility of an electron being in		
	the nucleus as a consequence of the uncertainty principle.		
	Nature of nuclear force, NZ graph, Liquid Drop		
	model: semi-empirical mass formula and binding		
	energy, Nuclear Shell Model, and magic numbers.		
	Radioactivity:		
	Stability of the nucleus; Law of radioactive decay; Mean		
	life and half-life; Alpha decay; Beta-decay- energy		
	released, spectrum and Pauli's prediction of neutrino;		
	Gamma-ray emission, energy-momentum conservation:		
	electron-positron pair creation by gamma photons in the		
	vicinity of a nucleus.		
Unit IV	Fission and fusion- mass deficit, relativity, and generation	15	10-12
	of energy; Fission - nature of fragments and emission of		
	neutrons.		
	Lasers: Einstein's A and B coefficients. Metastable		
	states. Spontaneous and Stimulated emissions. Optical		
	Pumping and Population Inversion. Three-Level and		
	Four-Level Lasers. Ruby Laser and He-Ne Laser.		1.0
	SILVED	Kı	me

School of Applied Sciences, K.K. University Biharsharif Nalanda

Useful links:

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLpRsN577rTzZ6XpdysX_qUmpImQsCopR5&si=hAlkcYVoLhK3QaN-

https://youtube.com/playlist?list=PLkECWNr1MOgc4D24GlSc04dHh5d8FYbTC&si=7PAnsJe6ybBNSYa

Books Recommended:

- Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan

Practical - I

Course Code: BSPH - 2201

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

Scilab-based simulation experiments based on Mathematical Physics problems like:

- 1. Solve differential equations: $dy/dx = e^{-x}$ with y=0 for x=0 $dy/dx+e^{-x}y=x^2$ d^2y/dt^2+2 dy/dt=-y $d^2y/dt^2+e^{-t}dy/dt=y$
- 2. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).
- 3. Calculation of least square fitting manually without giving weightageto error. Confirmation of least square fitting of data through the computer program.
- 4. Evaluation of trigonometric functions e.g. $\sin \theta$, Given Bessel's function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration.
- 5. Integral transform: FFT of *e* !!!

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Useful links:

https://youtu.be/UkZmROLRzRA?si=-LxaDd3r-LONdVIv

https://youtube.com/playlist?list=PLU6SqdYcYsfIuZVt20v-eNZBfFLENrM1F&si=za8Dcf6m2LtYjsm3

Practical - II

Course Code: BSPH 2202 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

School of Applied Sciences, K.K. University Biharsharif Nalanda

KK University

Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

- 1. Measurement of Planck's constant using black body radiation and photo-detector
- 2. Photo-electric effect: photocurrent versus intensity and wavelength of light; maximum energy of photo-electrons versus the frequency of light.
- 3 To determine the work function of the material of filament of directly heated vacuum diode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colors.
- 5. To determine the wavelength of the H-alpha emission line of the Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapor.

8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 9. To set up the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of the laser source using diffraction of a single slit.
- 12. To determine the wavelength of the laser source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laserusing plane diffraction grating

Useful links:

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

MATHEMATICS –IV

Course Code: BSMT-S- 2201

UNIT	CONTENTS	Lecture Hours	WEEK
			ALLOTMENT
Unit I	Sequence of real numbers: Definition of	18	1-4
	bounds of a sequence and monotone sequence.		
	Limit of a sequence. Statements of limit		
	theorems. Concept of convergence and		Rumb

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

	divergence of monotone sequences-applications		
	of the theorems, in particular, definition of e.		
	Statement of Cauchy's general principle of		
	convergence and its application.		
Unit II	Infinite series of constant terms; Convergence	18	5-10
	and Divergence (definitions). Cauchy's		
	principle is applied to infinite series		
	(application only). Series of positive terms:		
	Statements of comparison test. D. Alembert's		
	Ratio test. Cauchy's nth root test and Raabe's		
	test Applications. Alternating series. Statement		
	of Leibnitz test and its applications.		
Unit	Real-valued functions defined on an interval:	18	10-15
III	Statement of Rolle's Theorem and its		
	geometrical interpretation. Mean value		
	theorems of Lagrange and Cauchys' from of		
	remainders. Taylor's and Maclaurin's Infinite		
	series of functions like e^x , sinx, cosx, $(1+x)^n$,		
	log (1+x) with restrictions wherever necessary.		
	Application of the principle of Maxima and		
	minima for a formation of a simple contains		
	minima for a function of a single variable in		
	geometrical, physical, and other problems.		

CHEMISTRY – IV

Course Code: BSCH-S- 2201

UNITS	CONTENTS		WEEK
		Hours	ALLOTMENT
	Physical Chemistry	15	1-4
	Ionic Equilibrium		
	(a) Oswald's dilution law		
Unit I	(b) Salt Hydrolysis	0	1.0
	(c) Theory of acid-base indicator/ER	Kur	rh

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Chemical Kinetics (a) Second-order reaction, expression of rate constant. (b) Effect of temperature on reaction rate (c) Arrhenius equation		
Unit II	Inorganic Chemistry (a) Chemistry of Group 4 elements (b) Idea of Major pollutants in environments Chemistry of Fe, Cr, and Ni compounds	15	5-8
Unit III	Organic Chemistry Structure of Benzene and benzene Diazonium chloride Brief idea of Polymers, resins, drugs	15	8-12

CHEMISTRY –IV Lab

Course Code: BSCH-S- 2201P

PRACTI	CAL
1.	Organic chemistry
	Preparation of Organic compounds by using the following reactions:
	(a) Acetylation of Aniline
	2 40

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

KK University

Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

	(b) Oxidation of benzaldehyde	
	(c) Hydrolysis of esters	
		_
2.	Note book and Viva voce.	

ENGLISH – II

Course Code: ENL-2201

I. Short Stories

- 1. Maupassant The Necklace
- 2. O. Henry The Last Leaf
- 3. Catherine Mansfield A Cup of Tea
- 4. R.K. Narayan Selvi

5. MR Anand - The Lost Child

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

- 6. Jhumpa Lahiri The Interpreter of Maladies
- 7. Shashi Deshpande Hear Me Sanjaya!

II. Pieces of Prose

- a. James Bryce Some hints of Public Speaking
- b. C.E.M. .Toad A Dialogue on Civilization
- c. Hill Principles of good writing
- d. Bapsi Sidhwa Why do I write?
- e. Jawahar Lal Nehru The Reawakening of India
- f. Subhash Chandra Bose To Delhi, To Delhi
- g. Dr. Rukhmabai Purdah The Need for its Abolition

III. Novel

Lord of the Flies - William Golding

SEMESTER - V

Year	Semester	Course Code	Course Title	L	T	P	C
3	5	BSPH 3101	Quantum Mechanics And Applications	3	1	0	4
		BSPH 31102	Solid State Physics	3	1	0	4
		BSPH 3103	Digital Systems and Applications	3	1	0	4
		BSPH 3101-P	Quantum Mechanics And Applications	0	0	3	3
		BSPH 3102-P	Solid State Physics	0	0	3	3
		BSPH 3103-P	Digital Systems and Applications	0	0	3	3
_			Total	9	3	9	21

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Quantum Mechanics and Applications

Course Code: BSPH - 3101

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the basic principle of quantum mechanics and its formalism.
- 2. Understand the Schrodinger equation, Heisenberg's uncertainty principle, and Pauli's principle.
- 3. Evaluate and analyze the bound state of quantum systems like simple harmonic oscillators, hydrogen atoms, and H-like atoms.
- 4. Understand the impact of magnetic fields on quantum systems.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Time-dependent Schrodinger equation	15	1-3
	Time-dependent Schrodinger equation and dynamical		
	evolution of a quantum state; Properties of Wave		
	Function. Interpretation of Wave Function Probability		
	and probability current densities in three dimensions;		
	Conditions for Physical Acceptability of Wave Functions.	R	ink

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Normalization. Linearity and Superposition Principles.			
	Eigenvalues and Eigenfunctions. Position, momentum,			
	and Energy operators; commutator of position and			
	momentum operators; Expectation values of position and			
	momentum. Wave Function of a Free Particle.			
	Time-independent Schrodinger equation			
	Hamiltonian, stationary states and energy eigenvalues;			
	expansion of an arbitrary wavefunction as a linear			
	combination of energy eigenfunctions; General solution			
	of the time-dependent Schrodinger equation in terms of			
	linear combinations of stationary states; Application to			
	spread of Gaussian wave-packet for a free particle in one			
	dimension; wave packets, Fourier transforms and			
	momentum space wavefunction; Position-momentum			
	uncertainty			
	principle.			
Unit II	General discussion of bound states in an arbitrary	15	4-6	
	potential			
	Continuity of wave function, boundary condition, and the			
	emergence of discrete energy levels; application to one-			
	dimensional problem-square well potential; Quantum			
	mechanics of simple harmonic oscillator-energylevels and			
	energy eigenfunctions using Frobenius method; Hermite			
	polynomials; ground state, zero point energy &			
	uncertainty principle.			
	Quantum theory of hydrogen-like atoms			
	Time-independentSchrodinger equation in spherical polar			
	coordinates; separation of variables for second order			
	partial differential equation; angular momentum operator			
	& quantum numbers; Radial wavefunctions from			
	Enchaning mosthed, showed of the much shility densities for			
	Frobenius method; shapes of the probability densities for			
	ground & first excited states; Orbital angular momentum	0	mks	
		R	mk_	_

School of Applied Sciences, K.K. University Biharsharif Nalanda

	quantum numbers l and m; s,		
	p, d, shells.		
Unit	Atoms in Electric & Magnetic Fields	15	7-9
III	Electron angular momentum. Space quantization.		
	Electron Spin and Spin Angular Momentum. Larmor's		
	Theorem. Spin Magnetic Moment. Stern-Gerlach		
	Experiment. Zeeman Effect: Electron Magnetic Moment		
	and Magnetic Energy, Gyromagnetic Ratio and Bohr		
	Magneton.		
	Atoms in External Magnetic Fields		
	Normal and Anomalous Zeeman Effect. Paschen Back		
	and Stark Effect (Qualitative Discussion only).		
Unit IV	Many electron atoms: Pauli's Exclusion Principle.	15	10-14
	Symmetric & Antisymmetric Wave Functions. Periodic		
	table. Fine structure. Spin-orbit coupling. Spectral		
	Notations for Atomic States. Total angular momentum.		
	Vector Model. Spin-orbit coupling in atoms- L-S and J-J		
	couplings. Hund's Rule. Term symbols. Spectra of		
	Hydrogen and Alkali		
	Atoms (Na etc.).		

Useful links:

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLLFRJm7-ej7RK58iIz2eMM30hJABFfCF8&si=JEGdcgVceeAU55-

https://youtube.com/playlist?list=PL0KRvN5Kp6y8OxV0CnxkRR0ACAJ_2F3cj&si=jP7DW0zxB8 **VCZCAQ**

Books Recommended:

• A Textbook of Quantum Mechanics, P.M.Mathews and K.Venkatesan, 2nd Ed., 2010, McGraw Hill. Rumb

• Quantum Mechanics, Robert

Eisberg and

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor **KK University** Berauti, Nepura, Bihar Sharif

Nalanda - 803115 (Bihar)

Robert Resnick, 2nd Edn., 2002, Wiley.

- Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer.
- Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press.

Solid State Physics

Course Code: BSPH - 3102

Program Outcomes:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumb

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand crystallography to explain the atomic distribution of material.
- 2. Explore the material dielectric and magnetic properties for particular applications.
- 3. Understand the concept of band theory and superconductivity.
- 4. Analyze the nature of material through energy band theory.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Crystal Structure	20	1-4
	Solids: Amorphous and Crystalline Materials. Lattice		
	Translation Vectors. Lattice with a Basis - Central and		
	Non-Central Elements. Unit Cell. Miller Indices.		
	Reciprocal Lattice. Types of Lattices. Brillouin Zones.		
	Elementary Lattice Dynamics		
	Lattice Vibrations and Phonons: Linear Monoatomic and		
	Diatomic Chains. Acoustical and Optical Phonons.		
	Qualitative Description of the Phonon Spectrum in Solids.		
	Dulong and Petit's Law, Einstein and Debye's theories		
	of specific heat of solids. T ³ law	R	ink

School of Applied Sciences, K.K. University Biharsharif Nalanda

Unit II	Magnetic Properties of Matter	20	5-10
	Die Bere Frank and Francescourse Materials Charical		
	Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical		
	Langevin Theory of Dia– and Paramagnetic Domains.		
	Quantum Mechanical Treatment of Paramagnetism.		
	Curie's law, Weiss's Theory of Ferromagnetism and		
	Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.		
	Trysteresis and Energy Loss.		
	Dielectric Properties of Materials		
	Polarization. Local Electric Field at an Atom.		
	Depolarization Field. Electric Susceptibility.		
	Polarizability. Clausius Mosotti Equation. Classical		
	Theory of Electric Polarizability. Normal and Anomalous		
	Dispersion. Cauchy and Sellmeir relations. Langevin-		
	Debye equation. Complex Dielectric Constant.		
Unit	Ferroelectric Properties of Materials	20	11-15
III	Structural phase transition, Classification of crystals,		
	Piezoelectric effect, Pyroelectric effect, Ferroelectric		
	effect, Electrostrictive effect, Curie-Weiss Law,		
	Ferroelectric domains, PE hysteresis loop.		
	Elementary band theory		
	Kronig Penny model. Band Gap. Conductor,		
	Semiconductor (P and N-type), and insulator.		
	Conductivity of Semiconductor, mobility, Hall Effect.		
	Measurement of conductivity (04 probe method) & Hall		
	coefficient.		
	Superconductivity		
	Experimental Results. Critical Temperature. Critical		
	magnetic field. Meissner effect. Type I and type II		
	Superconductors, London's Equation and Penetration		
	Depth. Isotope effect. Idea of BCS theory (No derivation).	0	ink
	HIVER	V	11.00

School of Applied Sciences, K.K. University Biharsharif Nalanda

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PL0vbmKf7BZLPYukj_HEwJZmCxEPPPBOod&si=Fw4TTaLJxa_xWmcz

 $\underline{https://youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m\&si=knwd0wSbAbeLKI0l}$

Books Recommended:

- Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India.
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill.
- Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning.
- Solid-state Physics, H. Ibach and H. Luth, 2009, Springer.

Digital Systems and Applications

Course Code: BSPH - 3103

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the theoretical knowledge of digital electronics.
- 2. Apply the theoretical concept to design and prove the truth table of various logic gates.
- 3. Understand to design of combinational and sequential logic circuits.
- 4. Understand the program of the microprocessor.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Introduction to CRO	15	1-3
	Block Diagram of CRO. Electron Gun, Deflection		
	System, and Time Base. Deflection Sensitivity.		
	Applications of CRO: (1) Study of Waveform, (2)		
	Measurement of Voltage, Current, Frequency, and Phase		
	Difference.		
	Integrated Circuits		
	(Qualitative treatment only): Active & Passive		
	components. Discrete components. Wafer. Chip.	0	45
	Advantages and drawbacks of ICs. Scale of integration:	Ku	imb

School of Applied Sciences, K.K. University Biharsharif Nalanda

KK University Berauti, Nepura, Bihar Sharif

Pro Vice Chancellor

Nalanda - 803115 (Bihar)

	SSI, MSI, LSI, and VLSI (basic idea and definitions		
	only). Classification of ICs. Examples of Linear and		
	Digital ICs.		
Unit II	Digital Circuits	15	4-6
	Difference between Analog and Digital Circuits. Binary		- 0
	Numbers. Decimal to Binary and Binary to Decimal		
	Conversion. BCD, Octal, and Hexadecimal numbers.		
	AND, OR, and NOT Gates (realization using Diodes and		
	Transistor). NAND and NOR Gates as Universal Gates.		
	XOR and XNOR Gates and application as Parity		
	Checkers.		
	Checkers.		
	Boolean algebra		
	De Morgan's Theorems. Boolean Laws. Simplification of		
	Logic Circuit using Boolean Algebra. Fundamental		
	Products. The idea of Minterms and Maxterms.		
	Conversion of a Truth table into Equivalent Logic		
	Circuit by (1) Sum of Products Method and (2) Karnaugh		
	Map.		
Unit	Digital Circuits	15	7-9
III	Difference between Analog and Digital Circuits. Binary		
	Numbers. Decimal to Binary and Binary to Decimal		
	Conversion. BCD, Octal, and Hexadecimal numbers.		
	AND, OR, and NOT Gates (realization using Diodes and		
	Transistor). NAND and NOR Gates as Universal Gates.		
	XOR and XNOR Gates and application as Parity		
	Checkers.		
	Boolean algebra		
	De Morgan's Theorems. Boolean Laws. Simplification of		
	Logic Circuit using Boolean Algebra. Fundamental		
	Products. The idea of Minterms and Maxterms.		
	Conversion of a Truth Table into Equivalent Logic		
	Circuit by (1) Sum of Products Method and (2) Karnaugh	0	ink
	NIVER	V	1100

School of Applied Sciences, K.K. University Biharsharif Nalanda

	Map.		
Unit IV	Boolean algebra	15	10-12
	De Morgan's Theorems. Boolean Laws. Simplification of		
	Logic Circuit using Boolean Algebra. Fundamental		
	Products. The idea of Minterms and Maxterms.		
	Conversion of a Truth table into Equivalent Logic Circuit		
	by (1) Sum of Products Method and (2) Karnaugh Map.		
	Data processing circuits		
	Basic idea of Multiplexers, De-multiplexers, Decoders,		
	and Encoders.		
	Optical Circuits		
	Binary Addition, Half and Full Adders. Half & Full		
	Subtractors, 4-bit subtractor.		
Unit V	Sequential Circuits	15	13-15
	SR, D, and JK Flip-Flops. Clocked (Level and Edge		
	Triggered) Flip-Flops. Preset and Clear operations. Race-		
	around conditions in JK Flip-Flop. M/S JK Flip-		
	Flop.Timers: IC 555: block diagram and applications:		
	Astable multivibrator and Monostable multivibrator.		
	Shift registers Serial-in-Serial-out, Serial-in-Parallel-out,		
	Parallel-in-Serial-out, and Parallel-in-Parallel-out Shift		
	Registers (only up to 4 bits).		
	Counters(4 bits)		
	Ring Counter. Asynchronous counters, Decade Counter.		
	Synchronous Counter.Computer Organization:		
	Input/Output Devices. Data storage (idea of RAM and		
	ROM). Computer memory. Memory organization &		
	addressing. Memory Interfacing. Memory Map.		
	Intel 8085 Microprocessor Architecture		
	Main features of 8085. Block diagram. Components.	Ru	mW

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pin-out diagram. Buses. Registers. ALU. Memory.		
Stack memory. Timing & Control circuitry. Timing		
states. Instruction cycle, Timing diagram of MOV and		
MVI.Introduction to Assembly Language: 1 byte, 2 byte		
& 3 byte instructions.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

 $\underline{https://youtube.com/playlist?list=PLBlnK6fEyqRjMH3mWf6kwqiTbT798eAOm\&si=b3gk3wD5nE}\\ \underline{kRM66H}$

 $\underline{https://youtube.com/playlist?list=PLBlnK6fEyqRiw-GZRqfnlVIBz9dxrqHJS\&si=s_8B-YLgHgAucNVc}$

Books Recommended:

- Digital Principles and Applications, A.P. Malvino, D.P. Leach and Saha, 7th Ed., 2011, Tata McGraw.
- Fundamentals of Digital Circuits, Anand Kumar, 2nd Ed., 2009, PHI Learning Pvt. Ltd.
- Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- Digital Systems: Principles & Applications, R.J. Tocci, N.S. Widmer, 2001, PHI Learning.
- Logic circuit design, Shimon P. Vingron, 2012, Springer.

Pro Vice Chancellor

KK University
Berauti, Nepura, Bihar Sharif
Nalanda - 803115 (Bihar)

School of Applied Sciences, K.K. University Biharsharif Nalanda

Practical - I

Course Code: BSPH 3101 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 1. Study of electron spin resonance-determine magnetic field as a function of the resonance frequency.
- 2. Study of Zeeman effect: with an external magnetic field; Hyperfine splitting.
- 3. To show the tunneling effect in tunnel diode using I-V characteristics.
- 4. Quantum efficiency of CCDs.

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

Practical - II

Course Code: BSPH 3102 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 1. Measurement of Planck's constant using black body radiation and photo-detector.
- 2. Photo-electric effect: photocurrent versus intensity and wavelength of light; maximum energy of photo-electrons versus the frequency of light.
- 3. To determine the work function of the material of filament of directly heated vacuum diode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colors.
- 5. To determine the wavelength of the H-alpha emission line of the Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapor.

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Practical - III

Course Code: BSPH 3103 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

- 1. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 2. To set up the Millikan oil drop apparatus and determine the charge of an electron.
- 3. To show the tunneling effect in tunnel diode using I-V characteristics.
- 4. To determine the wavelength of the laser source using diffraction of a single slit.
- 5. To determine the wavelength of the laser source using diffraction of double slits.
- 6. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating.

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

School of Applied Sciences, K.K. University Biharsbarif Nalanda

Pro Vice Chancellor

SEMESTER – VI

Year	Semester	Course Code	Course Title	L	T	P	C
3	6	BSPH 3201	Electromagnetic Theory	3	1	0	4
		BSPH 3202	Statistical Mechanics	3	1	0	4
		BSPH 3203	Analog Systems And Applications	3	1	0	4
		BSPH3 201-P	Practical: Electromagnetic Theory	0	0	3	3
		BSPH 3202-P	Practical: Statistical Mechanics	0	0	3	3
		BSPH 3203-P	Practical: Analog Systems And Applications	0	0	3	3
			Total	9	3	9	21

Electromagnetic Theory

Course Code: BSPH - 3201

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the basic laws of electromagnetism.
- 2. Analyze and evaluate electric and magnetic fields for simple configurations and time-varying fields.
- 3. Understand Maxwell's equations in different forms and media, and apply them to solve problems.
- 4. Analyze and evaluate charge and current distribution for different forms of media.
- 5. Analyze the propagation, reflection, transmission, and boundary conditions of plane waves.

Objective of the Program:

School of Applied Sciences, K.K. University Biharsbarif Nalanda

Pro Vice Chancellor

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Maxwell Equations: Review of Maxwell's equations.	15	1-3
	Displacement Current. Vector and Scalar Potentials.		
	Gauge Transformations: Lorentz and Coulomb Gauge.		
	Boundary Conditions at Interface between Different		
	Media. Wave Equations. Plane Waves in Dielectric		
	Media. Poynting Theorem and Poynting Vector.		
	Electromagnetic (EM) Energy Density. Physical Concept		
	of Electromagnetic Field Energy Density, Momentum		
	Density, and Angular Momentum Density.		
	EM Wave Propagation in Unbounded Media		
	Plane EM waves through vacuum and isotropic dielectric		
	medium, transverse nature of plane EM waves,		
	refractive		
	index and dielectric constant, wave impedance.		
	Propagation through conducting media, relaxation time,		
	and skin depth. Wave propagation through dilute plasma,		
	electrical conductivity ofionized gases, plasma frequency,		
	refractive index, skin depth, and application to		
	propagation through the ionosphere.		
Unit II	EM Wave in Bounded Media	15	4-6
	Boundary conditions at a plane interface between two		
	media. Reflection & Refraction of plane waves at a plane		
	interface between two dielectric media-Laws of		
	Reflection & Refraction. Fresnel's Formulae for		
	perpendicular & parallel polarization cases, Brewster's	RI	ink

School of Applied Sciences, K.K. University Biharsharif Nalanda

Rro Vice Chancellor
KK University
Berauti, Nepura, Bihar Sharif
Nalanda - 803115 (Bihar)

	law. Reflection & Transmission coefficients. Total			
	internal reflection, evanescent waves. Metallic reflection			
	(normal Incidence).			
	Polarization of Electromagnetic Waves			
	Description of Linear, Circular, and Elliptical			
	Polarization. Propagation of E.M. Waves in Anisotropic			
	Media. Symmetric Nature of Dielectric Tensor. Fresnel's			
	Formula. Uniaxial and Biaxial Crystals. Light			
	Propagation in Uniaxial Crystal. Double Refraction.			
	Polarization by Double Refraction. Nicol Prism. Ordinary			
	& extraordinary refractive indices. Production &			
	detection of Plane, Circularly, and Elliptically Polarized			
	Light. Phase Retardation Plates: Quarter-Wave and Half-			
	Wave Plates. Babinet Compensator and			
	its Uses. Analysis of Polarized Light.			
Unit	Rotatory Polarization	15	7-9	
III	Optical Rotation. Biot's Laws for Rotatory Polarization.			
	Fresnel's Theory of Optical Rotation. Calculation of			
	angle of rotation. Experimental verification of Fresnel's			
	theory. Specific rotation. Laurent's half-shade			
	polarimeter.			
	Wave Guides			
	Planar optical waveguides. Planar dielectric waveguide.			
	Condition of continuity at the interface. Phase shift on			
	total reflection. Eigenvalue equations. Phase and group			
	velocity of guided waves. Field energy and Power			
	transmission.			
	Optical Fibres			
	Numerical Aperture. Step and Graded Indices			
	(Definitions Only).Single and Multiple Mode Fibres			
	(Concept and Definition Only).	R	ink	
1 - 6 A 1: - 1	Sciences K K University Ribarsbarif Nalanda	1/		

School of Applied Sciences, K.K. University Biharsharif Nalanda

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

https://youtube.com/playlist?list=PLgwJf8NK-2e4I_YltJja47CwZJkzNWK89&si=4KUscZHFPsFirOH3

https://youtube.com/playlist?list=PLpAS0uDkUOp8zJFWCFtgoFmZ77CHpsuVP&si=u5UaLAjX865iA_ks

Books Recommended:

- Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning.
- Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill.
- Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning.
 - Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Statistical Mechanics

Course Code: BSPH - 3202

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand how to connect statistical mechanics to other physics courses, such as thermodynamics, quantum mechanics, and solid-state physics.
- 2. Interpretate thermodynamical quantities and correlation functions for classical and quantum models.
- 3. Understand thermodynamic identities and use thermodynamic stability criteria for different systems.
- 4. Understand the application of statistical mechanics in condensed matter systems such as Bose and Fermi gases, superconductors, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Syllabus details:

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMENT
Unit I	Classical Statistics: Macrostate & Microstate,	15	1-3
	Elementary Concept of Ensemble, Phase Space, Entropy		
	and Thermodynamic Probability, Maxwell-Boltzmann		
	Distribution Law, Partition Function, Thermodynamic		
	Functions of an Ideal Gas, Classical Entropy Expression,		
	Gibbs Paradox, Sackur Tetrode equation, Law of		
	Equipartition of Energy (with proof) - Applications to		
	Specific Heat and its Limitations, Thermodynamic		
	Functions of a Two-Energy Levels System, Negative		
	Temperature.		
	Classical Theory of Radiation: Properties of Thermal		
	Radiation. Blackbody Radiation. Pure temperature		
	dependence. Kirchhoff's law. Stefan-Boltzmann law:		
	Thermodynamic proof. Radiation Pressure. Wien's		
	Displacement law. Wien's Distribution Law. Saha's		
	Ionization Formula. Rayleigh-Jean's Law. Ultraviolet		
	Catastrophe.		
Unit II	Classical Theory of Radiation: Properties of Thermal	15	4-6
	Radiation. Blackbody Radiation. Pure temperature		
	dependence. Kirchhoff's law. Stefan-Boltzmann law:		
	Thermodynamic proof. Radiation Pressure. Wien's		
	Displacement law. Wien's Distribution Law. Saha's		
	Ionization Formula. Rayleigh-Jean's Law. Ultraviolet		
	Catastrophe		
	Quantum Theory of Radiation: Spectral Distribution of		
	Black Body Radiation. Planck's Quantum Postulates.		
	Planck's Law of Blackbody Radiation: Experimental		
	Verification. Deduction of (1) Wien's Distribution Law,		
	(2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4)	5 82	
	Wien's Displacement law from Planck's Law.	Ri	ink

School of Applied Sciences, K.K. University Biharsharif Nalanda

Unit	Bose-Einstein Statistics: B-E distribution law,	15	7-9
III	Thermodynamic functions of a strongly Degenerate Bose		
	Gas, Bose-Einstein condensation, properties of liquid He		
	(qualitative description), Radiation as a photon gas, and		
	Thermodynamic functions of photon gas. Bose derivation		
	of Planck's law.		
	Fermi-Dirac Statistics: Fermi-Dirac Distribution Law,		
	Thermodynamic functions of a Completely and strongly		
	Degenerate Fermi Gas, Fermi Energy, Electron gas in a		
	Metal, Specific Heat of Metals, Relativistic Fermi gas,		
	White Dwarf Stars, Chandrasekhar Mass Limit.		

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

 $\underline{https://youtube.com/playlist?list=PL\ yoT1uNIKb5ECZhofT0WNdLYyw9gEhNA\&si=WQ4gcg\ t4htmnTRe}$

 $\underline{https://youtube.com/playlist?list=PLyTVFDODClZiqbL2doX45bhq6QGwebrid\&si=0cpVG9cdpzeDRTWI}$

Books Recommended:

- Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
- Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall
- Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumb

Analog Systems and Applications

Course Code: BSPH - 3203

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

- 1. Understand the basics of analog modulation methods and communication systems.
- 2. Analyze, classify, and perform operations on various types of signals and systems.
- 3. Understand the transformation of signals and systems in the continuous and discrete time domain.
- 4. Understand to explain the spectral density of signals.
- 5. Analyze and evaluate bandwidth and power requirements for analog systems.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

School of Applied Sciences, K.K. University Biharsharif Naland

Pro Vice Chancellor

UNITS	CONTENTS	Lecture	WEEK
		Hours	ALLOTMEN
Unit I	Semiconductor Diodes: P and N-type semiconductors.	20	1-5
	Energy Level Diagram. Conductivity and Mobility,		
	Concept of Drift velocity. PN Junction Fabrication		
	(Simple Idea). Barrier Formation in PN Junction Diode.		
	Static and Dynamic Resistance. Current Flow Mechanism		
	in Forward and Reverse Biased Diode. Drift Velocity.		
	Derivation for Barrier Potential, Barrier Width, and		
	Current for Step Junction.		
	Two-terminal Devices and their Applications: (1)		
	Rectifier Diode: Half-wave Rectifiers. Centre-tapped and		
	Bridge Full-wave Rectifiers, Calculation of Ripple Factor		
	and Rectification Efficiency, (2) Zener Diode and		
	Voltage Regulation. Principle and structure of (1) LEDs,		
	(2) Photodiode, (3) Solar Cell.		
Unit II	Bipolar Junction transistors: n-p-n and p-n-p Transistors.	20	6-10
	Characteristics of CB, CE, and CC Configurations.		
	Current gains α and β Relations between α and β . Load		
	Line Analysis of Transistors. DC Load line and Q-		
	point. Physical Mechanism of Current Flow. Active,		
	Cutoff, and Saturation Regions.		
	Amplifiers: Transistor Biasing and Stabilization Circuits.		
	Fixed Bias and Voltage Divider Bias. Transistor as 2-port		
	Network. H-parameter Equivalent Circuit. Analysis of a		
	single-stage CE amplifier using a Hybrid Model. Input		
	and Output Impedance. Current, Voltage, and Power		
	Gains. Classification of Class A,B & C Amplifiers.		
Unit	Amplifiers	20	11-15
III	Transistor Biasing and Stabilization Circuits. Fixed Bias		
	and Voltage Divider Bias. Transistor as 2-port Network.		
	H-parameter Equivalent Circuit. Analysis of		
		0	100 101

School of Applied Sciences, K.K. University Biharsharif Nalanda

a single-stage CE amplifier using a Hybrid Model. Input and Output Impedance. Current, Voltage, and Power Gains. Classification of Class A, B & C Amplifiers.

Coupled Amplifier: RC-coupled amplifier and its frequency response.

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise.

Sinusoidal Oscillators

Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators.

Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier,

(7) Zero crossing detector (8) Wein bridge oscillator.

Conversion

Resistive network (Weighted and R-2R Ladder). Accuracy and Resolution. A/D Conversion (successive approximation)

Useful links:

https://www.csirnetphysics.in/?m=

https://play.google.com/store/apps/details?id=csirnet.physics

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Rumb

 $\underline{https://youtube.com/playlist?list=PLU6SqdYcYsfKwY6IPDCshf1kKlk1CCd7d\&si=53ewhOZ4YogBkfhr}$

https://youtube.com/playlist?list=PLNKD1qB9ppttQLUfgB-lmdENDJuV1nODX&si=PKr2KLTRDNwC5-DT

Books Recommended:

- Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., 2009, PHI Learning
- OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India.

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumb

Practical - I

Course Code: BSPH 3201 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Kumh

measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other

topics revolving around it, including experiments and practicals, and help them to become better

problem solvers and good analysts.

Syllabus details:

1. To verify the law of Malus for plane-polarized light.

2. To determine the specific rotation of sugar solution using a Polarimeter.

3. To analyze elliptically polarized Light by using a Babinet's compensator.

4. To study the dependence of radiation on angle for a simple Dipole antenna.

5. To study the reflection and refraction of microwaves.

6. To study Polarization and double-slit interference in microwaves.

Useful links:

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

School of Applied Sciences, K.K. University Biharsharif Naland

Pro Vice Chancellor

KK University Berauti, Nepura, Bihar Sharif

Nalanda - 803115 (Bihar)

Practical - II

Course Code: BSPH 3202 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning, execution, data collection, and interpretation.

4. Laboratory Techniques:

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Introduce students to a variety of physics-related laboratory procedures, including magnetic field measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other topics revolving around it, including experiments and practicals, and help them to become better problem solvers and good analysts.

Syllabus details:

Use C/C⁺⁺/Scilab for solving problems based on Statistical Mechanics like

- Plot Planck's law for Black Body radiation and compare it with Wein's Law
 - and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, and (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases
- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

Useful links:

https://youtu.be/QZN2oNRVai8?si=uvG4vGIcuW0KRPLK

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

Practical - III

Course Code: BSPH 3203 - P

Program Outcomes:

- 1. Explore and comprehend the basic laws and principles that govern the physical world around us.
- 2. Identify the root causes to address core problems of physics.
- 3. Utilize the laws and principles to simplify physical phenomena and core problems.
- 4. Carry out simple experiments useful for everyday life.
- 5. Expand the scientific knowledge in modern physics to investigate how one field of physics may influence another.

Course Outcomes:

1. Hands-on Experience:

Give students real-world experience in a variety of physics topics to help them retain the theoretical information they learned in class.

2. Skill Development:

Gain and improve the practical knowledge and abilities needed to carry out research on physical science and experiments, including lab procedures.

3. Experimental Design and Execution:

Enable students to design and execute the project/working model including planning,

execution, data

Pro Vice Chancellor

Rumb

KK University Berauti, Nepura, Bihar Sharif Nalanda - 803115 (Bihar)

School of Applied Sciences, K.K. University Biharsharif Nalanda

collection, and interpretation.

4. Laboratory Techniques:

Introduce students to a variety of physics-related laboratory procedures, including magnetic field

measurement, light absorption, and emission, light scattering, etc.

Objective of the Program:

The primary objective of this program is to teach students the fundamentals of physics and other

topics revolving around it, including experiments and practicals, and help them to become better

problem solvers and good analysts.

Syllabus details:

1. To study V-I characteristics of PN junction diode, and Light emitting diode.

2. To study the V-I characteristics of a Zener diode and its use as the voltage regulator.

3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.

4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.

5. To study the various biasing configurations of BJT for normal class A operation.

6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.

7. To study the frequency response of voltage gain of an RC-coupled transistor amplifier.

8. To design a Wien bridge oscillator for a given frequency using an op-amp.

9. To design a phase shift oscillator of given specifications using BJT.

10. To study the Colpitt's oscillator.

Useful links:

https://youtu.be/ryB36ixUp4w?si=jVyI0bBz3f8GGV_e

https://youtu.be/TOs8h_AiBJU?si=2DUErIB_1CEJlotj

https://youtu.be/sUAQaEqvjMI?si=Q_oksIRCOPJUgYKT

https://youtu.be/0YuB_x1_H70?si=Z46ZvygCTbaSyM5b

School of Applied Sciences, K.K. University Biharsharif Nalanda

Pro Vice Chancellor

KK University Berauti, Nepura, Bihar Sharif

Nalanda - 803115 (Bihar)